2019高考物理三轮冲刺 大题提分 大题精做8 带电粒子在电场中运动



《2019高考物理三轮冲刺 大题提分 大题精做8 带电粒子在电场中运动》由会员分享,可在线阅读,更多相关《2019高考物理三轮冲刺 大题提分 大题精做8 带电粒子在电场中运动(8页珍藏版)》请在装配图网上搜索。
1、大题精做八 带电粒子在电场中运动 1.如图甲所示,热电子由阴极飞出时的初速度忽略不计,电子发射装置的加速电压为U0,偏转电场板间距离L=8 cm,极板长为2L,下极板接地,偏转电场极板右端到荧光屏的距离也是2L,在两极板间接有一交变电压,电压变化周期T=4 s,上极板的电势随时间变化的图象如图乙所示,大量电子从偏转电场中央持续射入,穿过平行板的时间都极短,可以认为电子穿过平行板的过程中电压是不变的。 (1)求电子进入偏转电场时的速度v0 (用电子比荷、加速电压U0表示); (2)在电势变化的每个周期内荧光屏会出现“黑屏”现象,即无电子击中屏幕,求每个周期内的“黑屏”时间有多长?
2、 (3)求荧光屏上有电子打到的区间的长度。 【解析】⑴根据题意可知,电子进入偏转电场时的速度即为电子出加速电场时的速度,根据动能定理有: eU0=12mv02-0 解得电子进入偏转电场时的速度为:v0=2emU0 ⑵电子射出偏转电场后做匀速直线运动至荧光屏,由图甲可知,只要电子能射出偏转电场,即可打到荧光屏上,因此当电子在偏转电场中侧移量大于L/2时,电子将打在偏转电场的极板上,致使出现“黑屏”现象,设电子刚好能射出电场时的偏转电压为Um,则有: L2=12•eUmmL•(2Lv0)2 解得:Um=0.5U0 结合图乙可知,在偏转电压u=0.8U0~0.5U0之间变化时,进入偏
3、转电场的电子无法射出偏转电场打到光屏上,因此每个周期时间内荧光屏出现“黑屏”的时间为 t=0.8-0.50.8+0.4T=1s ⑶设电子射出偏转电场时的侧移量为y,打在荧光屏上的位置到O的距离为Y,如图所示,由图中几何关系有: Yy=L+2LL=3 当电子向上偏转时,在屏上出现的最大距离为:Y1=3×L2=12cm 当电子向下偏转时,在屏上出现的最大距离为:Y2=3×0.40.5×L2=9.6cm 所以荧光屏上有电子打到的区间的长度为:l=Y1+Y2=21.6cm。 2.如图所示,质量m=1.0 kg、电荷量q=4×10-3 C的带负电小球(可视为质点)用长度l=0.8 m的不可
4、伸长的绝缘轻质细线悬吊在O点,过O点的竖直线右侧有竖直向下足够大的匀强电场,场强大小E=5×103N/C。现将小球拉至A处,此时,细线与竖直方向成θ角。现由静止释放小球,在小球运动过程中细线始终未被拉断。已知cos θ=,取重力加速度g=10 m/s2。 (1)求小球第一次运动到最低点时的速度大小。 (2)小球第一次进入电场时做什么运动?小球第一次离开电场时的速度多大?(结果可以保留根号) (3)求小球每次离开电场前瞬间细线对小球的拉力大小。 【解析】(1)小球从A处运动到最低点的过程,由机械能守恒定律得: mgl(1-cos θ)=mv02 代入数据得v0=2 m/s (2)由
5、于qE-mg=10 N>m=5 N,故小球先做类平抛运动,则有: x=v0t,y=at2,qE-mg=ma (y-l)2+x2=l2 联立并代入数据得:t=0.4 s,x=y=0.8 m 即小球恰好处于水平位置时细线张紧,此时,小球的竖直分速度vy=at=4 m/s 细线张紧瞬间,小球水平分速度立即变为零,以竖直分速度作为初始速度做圆周运动,则由细线张紧位置到第一次离开电场时,由动能定理得:(qE-mg)l=mv12-mv y2 代入数据得:v1=4 m/s (3)小球第一次离开电场到运动到最低点过程中,由动能定理得:mg·2l=mv1′2-mv12 解得:v1′=8 m/s
6、
由于qE-mg=10 N 7、一个安全接地的静电油漆喷枪P,油漆喷枪的半圆形喷嘴可向各个方向均匀地喷出带电油漆微粒,油漆微粒的质量m=2.0×10-15kg,电荷量q=-2.0×10-16C。喷出的初速度v0=2.0m/s。油漆微粒最后都落在金属板B上。微粒所受重力和空气阻力以及微粒之间的相互作用力均可忽略。求:
(1)微粒落在B板上的动能;
(2)微粒从离开喷枪后到达B板所需的最短时间;
(3)微粒最后落在B板上所形成图形的面积。
【解析】(1)据动能定理,电场力对每个微粒做功W=Ekt-Ek0=qEd
微粒打在B板上时的动能Ekt=W+Ek0=qEd+mv
代入数据解得Ekt=6.4×10-14J。
(2 8、)微粒初速度方向垂直于极板时,到达B板时间最短,到达B板时速度为vt,由Ekt=mv
可得vt=8.0m/s,由于微粒在两极板间做匀变速运动,即=。
解得t=0.06s。
(3)由于喷枪喷出的油漆微粒是沿各个方向的,因此微粒落在B板上所形成的图形是圆形。喷枪沿垂直电场方向喷出的油漆微粒在电场中做类平抛运动,根据牛顿第二定律,油漆微粒沿电场方向运动的加速度a=
运动的位移d=at
油漆微粒沿垂直于电场方向做匀速运动,运动的位移即为落在B板上圆周的半径R=v0t1
微粒最后落在B板上所形成的圆面积S=πR2
联立以上各式,得S=
代入数据解得S=7.5×10-2m2。
2.如 9、图所示,直角坐标系xOy的x轴水平,y轴竖直,处于竖直向下、大小为E0的匀强电场中,过O点,倾角为θ=60°的足够大斜面固定在坐标系中。质量为m、带电荷量为+q的粒子从y轴上的P点,以某一速度沿x轴正方向射入,经过时间t,在坐标平面内加上另一匀强电场E,再经过时间t,粒子刚好沿垂直于斜面的方向到达斜面,且到达斜面时速度为零.不计粒子重力,求:
(1)粒子的初速度大小;
(2)P点与x轴的距离;
(3)匀强电场E的电场强度大小。
【解析】(1)粒子运动轨迹如图中虚线所示,第一个时间t内,粒子做类平抛运动
加速度a=
加上电场E时,粒子做匀减速直线运动.粒子在竖直方向的速度vy=at
10、
此时合速度方向垂直于斜面:=tan θ
可解得粒子的初速度v0=
(2)第一个时间t内,粒子在竖直方向的位移y1=at2
水平方向的位移x1=v0t
在第二个时间t内,粒子在竖直方向的位移也为y1,水平方向的位移x2=y1tan θ
P点到x轴的距离l=2y1+(x1+x2)tan θ
代入数据得:l=
(3)在第二个时间t内,在竖直方向:qEy-qE0=ma
在水平方向:=
所以E=
解得:E=E0
3.在一空间范围足够大区域内可能存在竖直向上的匀强电场,其电场线与坐标xOy平面平行。以坐标原点O为圆心,作半径为R的圆交坐标轴于A、B两点,C点为AB圆弧中点位置,如图 11、所示。在原点O处有带正电小球,以某一初动能沿x轴正向水平抛出。
(1)空间电场强度为0时,小球以Ek0的初动能从O点平抛,刚好能经过C点位置,求小球经过C点位置时的动能。
(2)空间电场强度不为0时,小球以Ek0的初动能从O点平抛,当小球经过图中圆周上D点时动能大小为2Ek0,求D点位置坐标(图中未标出D点)。
(3)空间电场强度不为0时,小球以某一初动能从O点平抛,小球经过图中圆周上C点时动能大小为2Ek0,若已知带电小球的质量为m,电量为q,求空间所加匀强电场的场强大小(用m、q、g表达)。
【解析】(1)小球从O到C做平抛运动有xc=22R=v0t
yc=22R=12gt22= 12、12vyt
可得vy=2v0
则vC=v02+vy2=5v0
得EkC=5Ek0
(2)小球过D点时有
xD=v0t
yD=12vyt
EkD=2Ek0即12m(v02+vy2)=2⋅12mv02
可得vD=2v0则有vy=v0代入位移公式得:yD=12xD
又由几何关系得xD2+yD2=R2
解得xD=255R,yD=55R
(3)在(1)问中由22R=v0t和22R=12gt22
可得v02=224gR
空间有电场时小球过C点有:
xc=v′0t
yc=12at22
其中a=mg-Eqm,xc=yc=22R
v′y=2v′0
EkC=2Ek0即12m(v 13、'02+vʹy2)=2⋅12mv02
可得v'0=12v0
代入位移公式得:a=42v025R=2g5
代入加速度公式得E=3mg5q
4.在足够大的竖直匀强电场中,有一条与电场线平行的直线,如图中的虚线所示。直线上有两个小球A和B,质量均为m。电荷量为q的A球恰好静止,电荷量为2.5q的B球在A球正下方,相距为L。由静止释放B球,B球沿着直线运动并与A球发生正碰,碰撞时间极短,碰撞中A、B两球的总动能无损失。设在每次碰撞过程中A、B两球间均无电荷量转移,且不考虑两球间的库仑力和万有引力,重力加速度用g表示。求:
(1)匀强电场的电场强度大小E;
(2)第一次碰撞后,A、B两球的速 14、度大小vA、vB;
(3)在以后A、B两球不断地再次碰撞的时间间隔会相等吗?如果相等,请计算该时间间隔T;如果不相等,请说明理由。
【解析】(1)由题意可知,带电量为q的A球在重力和电场力的作用下恰好静止,则
qE=mg
可得匀强电场的电场强度大小E=mgq
(2)由静止释放B球,B球将在重力和电场力的作用下向上运动,设与A球碰撞前瞬间速度为v1
由动能定理(2.5qE-mg)L=12m v12
解得v1=3gL
A、B两球碰撞时间很短,且无动能损失,由动量守恒和动能守恒
m v1=mvA+ m vB
12m v12=12mvA2 +12m vB2
联立解得vA=0, 15、vB= v1=3gL
(3)设B球在复合场中运动的加速度为a,A、B两球第一次碰撞后,A球开始向上以速度v1做匀速直线运动,B球又开始向上做初速度为零的匀加速直线运动,设到第二次碰撞前的时间间隔是t1
根据位移关系v1 t1=12a t12
解得t1=2v1a
碰撞过程满足动量守恒且无动能损失,故每次碰撞之后两球都交换速度,第二次碰撞后,A球向上做匀速直线运动,速度为at1=2v1
B球向上做初速度为v1的匀加速直线运动,设到第三次碰撞前的时间间隔是t2
由位移关系2v1 t2= v1 t2+12a t22
解得t2=2v1a= t1
以此类推,每次碰撞时间间隔相等,该时 16、间间隔为T=2v1a
根据牛顿第二定律2.5qE-mg=ma ,a=1.5g
T=4L3g
5.如图所示,在竖直平面内存在直角坐标系xOy,第二象限内存在沿y轴正方向的匀强电场,电场强度为E1,在第一象限内存在水平向右的匀强电场,电场强度为E2=0.375N/C,在第一象限内,y=4m处有水平绝缘平台PA,右端与半径为R=0.4m的光滑绝缘竖直半圆弧轨道ACD平滑连接,相切于A点,D为其最高点。一质量为m1=2g、带正电q=0.1C的可视为质点的小球从x轴上某点Q以与x轴负半轴成60°、大小v0=10m/s的速度射入第二象限,恰好做匀速直线运动。现在第二象限内小球运动的某段路径上加上垂 17、直于纸面向外的圆形边界的匀强磁场,磁感应强度B=0.2T,小球经过磁场区域后恰好水平向右运动,垂直于y轴从点P(0,4m)进入第一象限,恰好与静止放置在P点且可视为质点、质量m2=3g、不带电的绝缘小物块碰撞并粘合在一起沿PA方向运动,设碰撞过程中带电量不变,粘合体命名为小物块S。已知小物块S与平台的动摩擦因数μ=0.35,平台PA的长度L=1.0m,重力加速度g=10m/s2,sin 37°=0.6,cos 37°=0.8,不计空气阻力。求:(结果可用根号表示)
(1)电场强度E1的大小;
(2)小球在磁场中运动的半径r的大小和圆形磁场区域的最小面积;
(3)小物块S在圆弧轨道上的最大 18、速度;小物块S能否达到D点,若不能,请说明理由,若能,请求出小物块S落到平台PA上的位置与A点的距离。
【解析】(1) 小球m1在第二象限做匀速直线运动,由平衡条件有
可得电场强度E1的大小
(2) 如图所示,在圆形磁场中做匀速圆周运动,由牛顿第二定律有
可得磁场中运动的半径
小球m1从G点进入磁场,从H点射出磁场,
其弦长GH为最小磁场圆的直径,
由几何知识有其圆心角θ=120º
磁场圆的最小半径
最小面积;
(3) 小球m1和小物块m2在P处碰撞,由动量守恒定律有
可得碰撞后小物块S的速度
小物块S在圆弧轨道上受电场力和重力作用的合力方向与竖直方向的夹角设为α,
,解得
过圆心作合力的平行线交圆周下方为M点,如图,
小物块S在M点有最大速度。
小物块S由P到M,由动能定理有
可得小物块S运动过程中的最大速度:
假设小物块S能够通过圆弧到达D点,从P到D,由动能定理有
可得小物块S在D的速度:
在D点有
可得在D点的轨道的支持力,故假设成立,小物块S能到达D点。
小物块S从D点水平抛出,竖直方向做自由落体运动,水平方向做匀减速直线运动,
可得落点距A的距离。
8
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。