2022年高考数学二轮复习 第三篇 方法应用篇 专题3.1 配方法 专题(练)理

上传人:xt****7 文档编号:105415252 上传时间:2022-06-12 格式:DOC 页数:8 大小:1.24MB
收藏 版权申诉 举报 下载
2022年高考数学二轮复习 第三篇 方法应用篇 专题3.1 配方法 专题(练)理_第1页
第1页 / 共8页
2022年高考数学二轮复习 第三篇 方法应用篇 专题3.1 配方法 专题(练)理_第2页
第2页 / 共8页
2022年高考数学二轮复习 第三篇 方法应用篇 专题3.1 配方法 专题(练)理_第3页
第3页 / 共8页
资源描述:

《2022年高考数学二轮复习 第三篇 方法应用篇 专题3.1 配方法 专题(练)理》由会员分享,可在线阅读,更多相关《2022年高考数学二轮复习 第三篇 方法应用篇 专题3.1 配方法 专题(练)理(8页珍藏版)》请在装配图网上搜索。

1、2022年高考数学二轮复习 第三篇 方法应用篇 专题3.1 配方法 专题(练)理 1.练高考 1.【xx课标II,理12】已知是边长为2的等边三角形,P为平面ABC内一点,则的最小值是( ) A. B. C. D. 【答案】B 【解析】 2. 【xx天津,理8】已知函数设,若关于x的不等式在R上恒成立,则a的取值范围是 (A) (B) (C) (D) 【答案】 (当时取等号), 所以, 综上.故选A. 3.【xx课标II,理14】函数()的最大值是

2、 . 【答案】1 【解析】 4.【xx高考新课标1】设直线y=x+2a与圆C:x2+y2-2ay-2=0相交于A,B两点,若,则圆C的面积为 . 【答案】 【解析】 由题意直线即为,圆的标准方程为, 所以圆心到直线的距离,所以, 故,所以.故填. 5.【xx课标II,理17】的内角所对的边分别为,已知, (1)求; (2)若,的面积为,求. 【答案】 (1); (2)。 【解析】 试题分析:利用三角形内角和定理可知,再利用诱导公式化简,利用降幂公式化简,结合求出;利用(1)中结论,利用勾股定理和面积公式求出,从而求出。

3、 6.【xx高考浙江】设函数=,.证明: (I); (II). 【答案】(Ⅰ)证明见解析;(Ⅱ)证明见解析. 【解析】 (Ⅰ)因为 由于,有 即, 所以 (Ⅱ)由得, 故 , 所以 . 由(Ⅰ)得, 又因为,所以, 综上, 2.练模拟 1.定义运算,若函数在上单调递减,则实数m的取值( ) A. B. C. D. 【答案】C 【解析】由定义知,在上单调递减,单调递增,由题意,又,故选C. 2.【xx届广东省兴宁市沐彬中学高三上中段】函数的最大值为_______。 【答案】 【解析】

4、 当时, 3.【xx届福建省高三毕业班总复习】己知函数, .若恒成立,求实数的取值范围. 【答案】 【解析】试题分析: 令,将原函数换元为二次函数,然后求解二次函数在闭区间上的值域即可求得实数的取值范围是. 试题解析: 设,因为,所以 函数可化成(), 当时, 是的减函数, 当时, 是的增函数. 又当时, ,当时, ,因为3>0,所以. 要使恒成立,,则,所以的取值范围为 4.【xx届河南省天一大联考高三上学期阶段性测试(二)】已知函数为偶函数. (Ⅰ)求的最小值; (Ⅱ)若不等式恒成立,求实数的最小值. 【答案】(1) 当时, 取得最小值2;(2) 实数的

5、最小值为. 试题解析: (Ⅰ) 由题意得, 即在R上恒成立, 整理得()(=0在R上恒成立, 解得, ∴. 设, 则 , ∵, ∴, ∴, ∴, ∴在上是增函数. 又为偶函数, ∴在上是减函数. ∴当时, 取得最小值2. (Ⅱ)由条件知 . ∵恒成立, ∴ 恒成立. 令 由 (Ⅰ)知, ∴时, 取得最大值0, ∴, ∴实数的最小值为. 5.已知点的坐标为,是抛物线上不同于原点的相异的两个动点,且. (1)求证:点共线; (2)若,当时,求动点的轨迹方程. 【答案】(1)证明见解析;(2). (2)由题意知,点是直角三角形斜边上的

6、垂足,又定点在直线上,,所以设动点,则, 又,所以,即 动点的轨迹方程为. 3.练原创 1.定义一种运算ab=b,a>b,(a,a≤b,)令f(x)=(cos2x+sin x) 4(5),且x∈,则函数f的最大值是( ) A.4(5) B.1 C.-1 D.-4(5) 【答案】A 【解析】设y=cos2x+sin x=-sin2x+sin x+1=-2(1)2+4(5), ∵x∈,∴0≤sin x≤1,∴1≤y≤4(5),即1≤cos2x+sin x≤4(5). 根据新定义的运算可知f(x)=cos2x+sin x,x∈, ∴f=-2(1)+4(5)=-2(1)+4

7、(5),x∈,π(π).∴f的最大值是4(5). 2.已知等差数列的前n项和为,且,若数列在时为递增数列,则实数的取值范围为( ) A. (-15,+) B[-15,+) C.[-16,+) D. (-16,+) 【答案】D 【解析】因为数列是等差数列,所以,若数列在时为递增数列,故对称轴,解得,选D. 3. 设分别为和椭圆上的点,则两点间的最大距离是( ) A. B. C. D. 【答案】D 【解析】依题意两点间的最大距离可以转化为圆心到椭圆上的点的最大距离再加上圆的半径.设椭圆 上的一点,圆心到椭圆的

8、距离 .所以两点间的最大距离是.故选D. 4.对于c>0,当非零实数a,b满足4a2-2ab+4b2-c=0,且使|2a+b|最大时,的最小值为 . 【答案】-2 【解析】由题知2c=-(2a+b)2+3(4a2+3b2),(4a2+3b2)3(1)≥(2a+b)2⇔4a2+3b2≥4(3)(2a+b)2,即2c≥4(5)(2a+b)2,当且仅当1(4a2)=3(1),即2a=3b=6λ(同号)时,|2a+b|取得最大值c(8),此时c=40λ2. a(3)-b(4)+c(5)=8λ2(1)-λ(1)=8(1)-4(1)-2≥-2,当且仅当a=4(3),b=2(1),c=2(5)时,a(3)-b(4)+c(5)取最小值-2. 5. 在各项均为正数的等比数列中,,且,,成等差数列. (Ⅰ) 求等比数列的通项公式; (Ⅱ) 若数列满足,求数列的前n项和的最大值. 【答案】 【解析】 (Ⅰ)设数列的公比为q,. 因为,,成等差数列,所以,则, 所以,解得或(舍去), 又,所以数列的通项公式. (Ⅱ) , 则,,故数列是首项为9,公差为-2的等差数列, 所以, 所以当时,的最大值为25.

展开阅读全文
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

相关资源

更多
正为您匹配相似的精品文档
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!