2022年高考数学二轮专题复习 第三部分 题型技法考前提分 题型专项训练5 三角函数与三角形 新人教A版

上传人:xt****7 文档编号:105473715 上传时间:2022-06-12 格式:DOC 页数:5 大小:42.02KB
收藏 版权申诉 举报 下载
2022年高考数学二轮专题复习 第三部分 题型技法考前提分 题型专项训练5 三角函数与三角形 新人教A版_第1页
第1页 / 共5页
2022年高考数学二轮专题复习 第三部分 题型技法考前提分 题型专项训练5 三角函数与三角形 新人教A版_第2页
第2页 / 共5页
2022年高考数学二轮专题复习 第三部分 题型技法考前提分 题型专项训练5 三角函数与三角形 新人教A版_第3页
第3页 / 共5页
资源描述:

《2022年高考数学二轮专题复习 第三部分 题型技法考前提分 题型专项训练5 三角函数与三角形 新人教A版》由会员分享,可在线阅读,更多相关《2022年高考数学二轮专题复习 第三部分 题型技法考前提分 题型专项训练5 三角函数与三角形 新人教A版(5页珍藏版)》请在装配图网上搜索。

1、2022年高考数学二轮专题复习 第三部分 题型技法考前提分 题型专项训练5 三角函数与三角形 新人教A版 1.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知sin C+sin(B-A)=sin 2A,A≠. (1)求角A的取值范围; (2)若a=1,△ABC的面积S=,C为钝角,求角A的大小. 2.在△ABC中,角A,B,C所对的边分别是a,b,c,且. (1)求角A的大小; (2)若4sin Bsin C=3,试判断△ABC的形状,并说明理由. 3

2、.在△ABC中,角A,B,C的对边分别为a,b,c,且满足4cos C+cos 2C=4cos Ccos2. (1)求角C的大小; (2)若=2,求△ABC面积的最大值. 4.已知a=(sin x,cos x+sin x),b=(2cos x,sin x-cos x),f(x)=a·b. (1)求函数f(x)的单调递增区间; (2)当x∈时,对任意t∈R,不等式mt2+mt+3≥f(x)恒成立,求实数m的取值范围. 5.(xx浙江杭

3、州一模,文16)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知cos 2A+=2cos A. (1)求角A的大小; (2)若a=1,求△ABC的周长l的取值范围. 6.在△ABC中,内角A,B,C的对边分别为a,b,c,且cos 2A=3cos(B+C)+1. (1)求角A的大小; (2)若cos Bcos C=-,且△ABC的面积为2,求a. 题型专项训练5 三角函数与 三角形(解答题专项) 1.解:(1)由sin C+sin(B-A)=sin 2A,得sin(B+

4、A)+sin(B-A)=2sin Acos A. 即2sin Bcos A=2sin Acos A.因为cos A≠0,所以sin B=sin A. 由正弦定理,得b=a,故A必为锐角. 又0

5、 由余弦定理得cos A=,又0

6、8,当且仅当a=4,b=2时取等号. 此时S△ABC=absin C=ab,其最大值为2. 4.解:f(x)=a·b=2sin xcos x+(cos x+sin x)(sin x-cos x)=sin 2x-cos 2x=2sin. (1)令-+2kπ≤2x-+2kπ,k∈Z得-+kπ≤x≤+kπ,k∈Z, 所以函数的单调递增区间为,k∈Z. (2)当x∈时,≤2x-,所以≤2sin≤2, 因为对任意t∈R,不等式mt2+mt+3≥f(x)恒成立, 所以mt2+mt+3≥f(x)max恒成立,即mt2+mt+3≥2,即mt2+mt+1≥0恒成立. 若m=0,符合条件;若m≠0

7、,则m>0且m2-4m≤0,即0

展开阅读全文
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

相关资源

更多
正为您匹配相似的精品文档
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!