2020年高考数学《数列》专题 等比数列学案
《2020年高考数学《数列》专题 等比数列学案》由会员分享,可在线阅读,更多相关《2020年高考数学《数列》专题 等比数列学案(4页珍藏版)》请在装配图网上搜索。
1、基础过关 第3课时 等比数列 1.等比数列的定义:=q(q为不等于零的常数). 2.等比数列的通项公式: ⑴ an=a1qn-1 ⑵ an=amqn-m 3.等比数列的前n项和公式: Sn= 4.等比中项:如果a,b,c成等比数列,那么b叫做a与c的等比中项,即b2= (或b= ). 5.等比数列{an}的几个重要性质: ⑴ m,n,p,q∈N*,若m+n=p+q,则 . ⑵ Sn是等比数列{an}的前n项和且Sn≠0,则Sn,S2n-Sn,S3n-S2n成 数列. ⑶ 若等比数列{an}的前n
2、项和Sn满足{Sn}是等差数列,则{an}的公比q= . 典型例题 例1. 已知等比数列{an}中,a1+an=66,a2an-1=128,Sn=126,求项数n和公比q的值. 解:∵{an}是等比数列, ∴a1·an=a2·an-1, ∴,解得或 若a1=2,an=64,则2·qn-1=64 ∴qn=32q 由Sn=, 解得q=2,于是n=6 若a1=64,an=2,则64·qn-1=2 ∴qn= 由Sn= 解得q=,n=6 变式训练1.已知等比数列{an}中,a1·a9=64,a3+a7=20,则a11= . 解:64或1
3、 由 或 ∴ q2=或q2=2,∴ a11=a7 q2,∴ a11=64或a11=1 例2. 设等比数列{an}的公比为q(q>0),它的前n项和为40,前2n项和为3280,且前n项中数值最大项为27,求数列的第2n项. 解:若q=1,则na1=40,2na1=3280矛盾,∴ q≠1.∴ 两式相除得:qn=81,q=1+2a1 又∵q>0,∴ q>1,a1>0 ∴ {an}是递增数列. ∴ an=27=a1qn-1= 解得 a1=1,q=3,n=4 变式训练2.已知等比数列{an}前n项和Sn=2n-1,{an2}前n项和为Tn,求Tn的表达式. 解:(1)
4、 ∵a1+2a22=0,∴公比q= 又∵S4-S2=, 将q=-代入上式得a1=1, ∴an=a1qn-1=(-) n-1 (n∈N*) (2) an≥(-) n-1≥()4 n≤5 ∴原不等式的解为n=1或n=3或n=5. 例3. 有四个数,其中前三个数成等差数列,后三个数成等比数列,并且第一个数与第四个数的和是16,第二个数与第三个数的和是12,求这四个数. 解:设这四个数为a-d,a,a+d, 依题意有: 解得: 或 ∴ 这四个数为0,4,8,16或15,9,3,1. 变式训练3.设是等差数列的前项和,,则等于( ) A. 15
5、 B. 16 C. 17 D. 18 答案: D。解析:由得,再由。 例4. 已知函数f(x)=(x-1)2,数列{an}是公差为d的等差数列,数列{bn}是公比为q的等比数列(q≠1),若a1=f(d-1),a3=f(d+1), b1=f(q-1),b3=f(q+1), (1) 求数列{an},{bn}的通项公式; (2) 设数列{cn}对任意的自然数n均有:,求数列{cn}前n项和Sn. 解:(1) a1=(d-2)2,a3=d2,a3-a1=2d 即d2-(d-2)2=2d,解之得d=2 ∴a1=0,an=2
6、(n-1) 又b1=(q-2)2,b3=q2,b3=b1q2 即q2=(q-2)2 q2,解之得q=3∴b1=1,bn=3n-1 (2) Sn=C1+C2+C3+…+Cn =4(1×3°+2×31+3×32+…+n×3 n-1) 设1×3°+2×3´+3×32+…+n×3 n-1 31×31+2×32+3×33+…+n×3 n -21+3+32+33+…+3 n-1-n×3 n=-3 n·n ∴Sn=2n·3n-3n+1 变式训练4.已知等差数列{an}的首项a1=1,公差d>0,且第二项,第五项,第十四项分别是 等比数列{bn}的第二项,第三项,第四项. ⑴求数
7、列{an}与{bn}的通项公式; ⑵设数列{cn}对任意正整数n,均有,求c1+c2+c3+…+c2020的值. 解:⑴由题意得(a1+d)(a1+13d)=(a1+4d)2(d>0) 解得d=2,∴an=2n-1,bn=3n-1. ⑵当n=1时,c1=3 当n≥2时,∵∴ 故 归纳小结 1.在等比数列的求和公式中,当公比q≠1时,适用公式Sn=,且要注意n表示项数;当q=1时,适用公式Sn=na1;若q的范围未确定时,应对q=1和q≠1讨论求和. 2.在等比数列中,若公比q > 0且q≠1时,可以用指数函数的单调性确定数列的最大项或最小项. 3.若有四个数构成的函数,前三个成等差数列,后三个成等比数列时,关键是如何巧妙地设这四个数,一般是设为x-d,x,x+d,再依题意列出方程求x、d即可. 4.a1与q是等比数列{an}中最活跃的两个基本量.
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。