2020届高考数学一轮复习 第13章 选修部分 58 参数方程课时训练 文(含解析)



《2020届高考数学一轮复习 第13章 选修部分 58 参数方程课时训练 文(含解析)》由会员分享,可在线阅读,更多相关《2020届高考数学一轮复习 第13章 选修部分 58 参数方程课时训练 文(含解析)(3页珍藏版)》请在装配图网上搜索。
1、【课时训练】参数方程 解答题 1.(2018河南郑州模拟)已知曲线C1的参数方程为曲线C2的极坐标方程为ρ=2 cos (θ-),以极点为坐标原点,极轴为x轴正半轴建立平面直角坐标系. (1)求曲线C2的直角坐标方程; (2)求曲线C2上的动点M到曲线C1的距离的最大值. 【解】(1)ρ=2 cos =2(cos θ+sin θ), 即ρ2=2(ρcos θ+ρsin θ),可得x2+y2-2x-2y=0, 故C2的直角坐标方程为(x-1)2+(y-1)2=2. (2)C1的普通方程为x+y+2=0,由(1)知曲线C2是以(1,1)为圆心,以为半径的圆,且圆心到直线C1的距离d
2、==,所以动点M到曲线C1的距离的最大值为. 2.(2018福建三明质检)在极坐标系中,已知三点O(0,0),A,B. (1)求经过点O,A,B的圆C1的极坐标方程; (2)以极点为坐标原点,极轴为x轴的正半轴建立平面直角坐标系,圆C2的参数方程为(θ是参数).若圆C1与圆C2外切,求实数a的值. 【解】(1)O(0,0),A,B 对应的直角坐标分别为O(0,0),A(0,2),B(2,2),则过点O,A,B的圆的普通方程为x2+y2-2x-2y=0,将代入可求得经过点O,A,B的圆C1的极坐标方程为ρ=2 cos . (2)圆C2:(θ是参数)对应的普通方程为(x+1)2+(y+1
3、)2=a2,圆心为(-1,-1),半径为|a|,而圆C1的圆心为(1,1),半径为,所以当圆C1与圆C2外切时,有+|a|=,解得a=±. 3.(2018江西百校联盟)在平面直角坐标系xOy中,C1:(t为参数)以原点O为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C2:ρ2+10ρcos θ-6ρsin θ+33=0. (1)求C1的普通方程及C2的直角坐标方程,并说明它们分别表示什么曲线; (2)若P,Q分别为C1,C2上的动点,且|PQ|的最小值为2,求k的值. 【解】(1)由可得其普通方程为y=k(x-1),它表示过定点(1,0),斜率为k的直线. 由ρ2+10ρcos θ
4、-6ρsin θ+33=0可得其直角坐标方程为x2+y2+10x-6y+33=0,整理得(x+5)2+(y-3)2=1,它表示圆心为(-5,3),半径为1的圆. (2)因为圆心(-5,3)到直线y=k(x-1)的距离d==,故|PQ|的最小值为-1,故-1=2,得3k2+4k=0,解得k=0或k=-. 4.(2018贵州贵阳模拟)在平面直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.已知点P的直角坐标为,曲线C的极坐标方程为ρ=5,直线l过点P且与曲线C相交于A,B两点. (1)求曲线C的直角坐标方程; (2)若|AB|=8,求直线l的直角坐标方程. 【解】(1
5、)由ρ=5知ρ2=25,所以x2+y2=25, 即曲线C的直角坐标方程为x2+y2=25. (2)设直线l的参数方程为(t为参数)① 将参数方程①代入圆的方程x2+y2=25, 得4t2-12(2cos α+sin α)t-55=0, ∴Δ=16[9(2cos α+sin α)2+55]>0, 上述方程有两个相异的实数根,设为t1,t2, ∴|AB|=|t1-t2|==8, 化简有3cos2 α+4sin αcos α=0, 解得cos α=0或tan α=-, 从而可得直线l的直角坐标方程为x+3=0或3x+4y+15=0. 5.(2018辽宁五校联考)已知动点P,Q都在曲线C:(t为参数)上,对应参数分别为t=α与t=2α(0<α<2π),M为PQ的中点. (1)求M的轨迹的参数方程; (2)将M到坐标原点的距离d表示为α的函数,并判断M的轨迹是否过坐标原点. 【解】(1)依题意有P(2cos α,2sin α),Q(2cos 2α,2sin 2α),因此M(cos α+cos 2α,sin α+sin 2α). M的轨迹的参数方程为(α为参数,0<α<2π). (2)点M到坐标原点的距离d==(0<α<2π). 当α=π时,d=0,故M的轨迹过坐标原点. 3
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年水电工程运行维护管理合同示范文本.docx
- 2025年工程勘测设计合同模板.docx
- 2025年区域产品销售代理合同.docx
- 2025年经销商授权合同样本.docx
- 2025年员工住房资金借贷合同.docx
- 2025年轻钢建筑施工合同示例.docx
- 2025年网络推广托管合同.docx
- 2025年简明个人借款正式合同范例.docx
- 2025年房产按揭贷款合同范例.docx
- 2025年技术合同争议调解.docx
- 2025年电子版城市住宅租赁合同范本.docx
- 2025年简易转让合同协议书样本.docx
- 2025年投资顾问服务合同实例.docx
- 2025年经销合同模板.docx
- 2025年工业项目设计合同样本.docx