2020高考数学总复习 第十章 概率 课时作业58 古典概型 文(含解析)新人教A版



《2020高考数学总复习 第十章 概率 课时作业58 古典概型 文(含解析)新人教A版》由会员分享,可在线阅读,更多相关《2020高考数学总复习 第十章 概率 课时作业58 古典概型 文(含解析)新人教A版(8页珍藏版)》请在装配图网上搜索。
1、课时作业58 古典概型 1.(2017·天津卷)有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为( C ) A. B. C. D. 解析:从5支彩笔中任取2支不同颜色的彩笔,有以下10种情况:(红,黄),(红,蓝),(红,绿),(红,紫),(黄,蓝),(黄,绿),(黄,紫),(蓝,绿),(蓝,紫),(绿,紫).其中含有红色彩笔的有4种情况:(红,黄),(红,蓝),(红,绿),(红,紫),所以所求事件的概率P==.故选C. 2.(2019·东北四市模拟)将一枚硬币连续抛掷n次,若使得至少
2、有一次正面向上的概率不小于,则n的最小值为( A ) A.4 B.5 C.6 D.7 解析:依题意,得1-n≥,解得n≥4. 3.(2019·广东茂名一模)在1,2,3,6这组数据中随机取出三个数字,则数字2是这三个不同数字的平均数的概率是( A ) A. B. C. D. 解析:在1,2,3,6这组数据中随机取出三个数字,基本事件总共有4个,分别为(1,2,3),(1,2,6),(1,3,6),(2,3,6).数字2是三个不同数字的平均数所包含的基本事件只有(1,2,3),共1个.∴数字2是三个不同数字的平均数的概率P=.故选A. 4.(2016·北京卷)从甲
3、、乙等5名学生中随机选出2人,则甲被选中的概率为( B ) A. B. C. D. 解析:设其他3名学生为丙、丁、戊,从中任选2人的所有情况有(甲,乙),(甲,丙),(甲,丁),(甲,戊),(乙,丙),(乙,丁),(乙,戊),(丙,丁),(丙,戊),(丁,戊),共4+3+2+1=10种. 其中甲被选中的情况有(甲,乙),(甲,丙),(甲,丁),(甲,戊),共4种, 故甲被选中的概率为=,故选B. 5.随机掷两枚质地均匀的骰子,它们向上的点数之和不超过5的概率记为p1,点数之和大于5的概率记为p2,点数之和为偶数的概率记为p3,则( C ) A.p1<p2<p3 B.p2
4、<p1<p3
C.p1<p3<p2 D.p3<p1<p2
解析:随机抛掷两枚骰子,它们向上的点数之和的结果如图,
则p1=,p2=,p3=,
∴p1<p3<p2,故选C.
6.(2019·海口模拟)已知集合A={x|x2+2x-3<0},B={x|(x+2)(x-3)<0},设(a,b)为有序实数对,其中a是从集合A中任取的一个整数,b是从集合B中任取的一个整数,则“a-b∈(A∪B)”的概率为( C )
A. B.
C. D.
解析:由已知得A={x|-3 5、1,0,1,2),a-b共有12个结果,即12个基本事件:-1,-2,-3,-4,0,-1,-2,-3,1,0,-1,-2,又A∪B=(-3,3),设事件E为“a-b∈(A∪B)”,则事件E包含9个基本事件,故事件E发生的概率P(E)==.
7.(2019·河北七校联考)若m是集合{1,3,5,7,9,11}中任意选取的一个元素,则椭圆+=1的焦距为整数的概率为.
解析:m是集合{1,3,5,7,9,11}中任意选取的一个元素,∴基本事件总数为6,又满足椭圆+=1的焦距为整数的m的取值有1,3,11,共有3个,∴椭圆+=1的焦
距为整数的概率P==.
8.(2019·安徽池州模拟)小明 6、忘记了微信登录密码的后两位,只记得最后一位是字母A,a,B,b中的一个,另一位是数字4,5,6中的一个,则小明输入一次密码能够成功登陆的概率是.
解析:小明输入密码后两位的所有情况为(4,A),(4,a),(4,B),(4,b),(5,A),(5,a),(5,B),(5,b),(6,A),(6,a),(6,B),(6,b),共12种,而能成功登陆的密码只有一种,故小明输入一次密码能够成功登陆的概率是.
9.将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是.
解析:将一颗质地均匀的骰子先后抛掷2次,所有等可 7、能的结果有(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),…,(6,6),共36种情况.设事件A=“出现向上的点数之和小于10”,其对立事件=“出现向上的点数之和大于或等于10”,包含的可能结果有(4,6),(5,5),(5,6),(6,4),(6,5),(6,6),共6种情况.所以由古典概型的概率公式,得P()==,所以P(A)=1-=.
10.已知正方体ABCDA1B1C1D1的6个面的中心分别为E,F,G,H,I,J,甲从这6个点中任选2个点连成直线l1,乙也从这6个点中任选2个点连成与直线l1垂直的直线l2,则l1与l2异面的概率是. 8、
解析:如图所示,因为正方体6个面的中心构成一个正八面体,所以甲、乙连成的两条直线互相垂直的情况有:IJ⊥EF,IJ⊥GH,IJ⊥GE,IJ⊥GF,IJ⊥EH,IJ⊥FH,EF⊥GH,EF⊥GI,EF⊥GJ,EF⊥HI,EF⊥HJ,GH⊥EI,GH⊥EJ,GH⊥FI,GH⊥FJ,共15组,其中异面的有:IJ⊥GE,IJ⊥GF,IJ⊥EH,IJ⊥FH,EF⊥GI,EF⊥GJ,EF⊥HI,EF⊥HJ,GH⊥EI,GH⊥EJ,GH⊥FI,GH⊥FJ,共12组,故所得的两条直线异面的概率P==.
11.(2019·安徽合肥第一次教学质量检测)某班级甲、乙两个小组各有10位同学,在一次期中考试中 9、,两个小组同学的成绩如下:
甲组:94,69,73,86,74,75,86,88,97,98;
乙组:75,92,82,80,95,81,83,91,79,82.
(1)画出这两个小组同学成绩的茎叶图,判断哪一个小组同学的成绩差异较大,并说明理由;
(2)从这两个小组成绩在90分以上的同学中,随机选取2人在全班介绍学习经验,求选出的2位同学不在同一个小组的概率.
解:(1)茎叶图如图.
由茎叶图中数据分布可知,甲组数据分布比较分散,乙组数据分布相对集中,所以甲组同学的成绩差异较大.
(也可通过计算方差说明,s=101.6,s=37.4,s>s)
(2)设甲组成绩在90分以上 10、的三位同学为A1,A2,A3;乙组成绩在90分以上的三位同学为B1,B2,B3.
从这6位同学中选出2位同学,共有15个基本事件,列举如下:
(A1,A2),(A1,A3),(A1,B1),(A1,B2),(A1,B3);
(A2,A3),(A2,B1),(A2,B2),(A2,B3);
(A3,B1),(A3,B2),(A3,B3);
(B1,B2),(B1,B3);
(B2,B3).
其中,从这6位同学中选出的2位同学不在同一个小组的基本事件有9个,
所以所求概率P==.
12.海关对同时从A,B,C三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位 11、:件)如下表所示.工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.
地区
A
B
C
数量
50
150
100
(1)求这6件样品中来自A,B,C各地区商品的数量;
(2)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率.
解:(1)A,B,C三个地区商品的总数量为50+150+100=300,抽样比为=,
所以样本中包含三个地区的个体数量分别是
50×=1,150×=3,100×=2.
所以A,B,C三个地区的商品被选取的件数分别是1,3,2.
(2)设6件来自A,B,C三个地区的样品分别为:
A;B1,B2, 12、B3;C1,C2.
则从6件样品中抽取的这2件商品构成的所有基本事件为:
{A,B1},{A,B2},{A,B3},{A,C1},{A,C2},{B1,B2},{B1,B3},{B1,C1},{B1,C2},{B2,B3},{B2,C1},{B2,C2},{B3,C1},{B3,C2},{C1,C2},共15个.
每个样品被抽到的机会均等,因此这些基本事件的出现是等可能的.
记事件D:“抽取的这2件商品来自相同地区”,则事件D包含的基本事件有:{B1,B2},{B1,B3},{B2,B3},{C1,C2},共4个.
所以P(D)=,
即这2件商品来自相同地区的概率为.
13. 13、(2019·陕西模拟)现有2名女教师和1名男教师参加说题比赛,共有2道备选题目,若每位选手从中有放回地随机选出一道题进行说课,其中恰有一男一女抽到同一道题的概率为( C )
A. B.
C. D.
解析:记两道题分别为A,B,所有抽取的情况为AAA,AAB,ABA,ABB,BAA,BAB,BBA,BBB(其中第1个,第2个分别表示两个女教师抽取的题目,第3个表示男教师抽取的题目),共有8种;其中满足恰有一男一女抽到同一道题目的情况为ABA,ABB,BAA,BAB,共4种.故所求事件的概率为.故选C.
14.(2019·江西宜春高考模拟)将一个质地均匀的正方体骰子(六个面的点数分别为 14、1,2,3,4,5,6)先后抛掷两次,记第一次出现的点数为a,第二次出现的点数为b,若已知出现了点数5,则使不等式a-b+3>0成立的概率为( B )
A. B.
C. D.
解析:由题意知,在已知出现点数5的前提下,基本事件总数n=6+6=12,使不等式a-b+3>0成立包含的基本事件有(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(3,5),(4,5),(6,5),共有m=9个,∴出现了点数5,使不等式a-b+3>0成立的概率P===,故选B.
15.(2019·广东江门模拟(一模))两位教师对一篇初评为“优秀”的作文复评,若批改成绩都是两位正整数,且 15、十位数字都是5,则两位教师批改成绩之差的绝对值不超过2的概率为0.44.
解析:用(x,y)表示两位教师的批改成绩,则(x,y)的所有可能情况有10×10=100种.
当x=50时,y可取50,51,52,共3种可能;
当x=51时,y可取50,51,52,53,共4种可能;
当x=52,53,54,55,56,57时,y的取法均有5种,共30种可能;
当x=58时,y可取56,57,58,59,共4种可能;
当x=59时,y可取57,58,59,共3种可能.
综上可得两位教师批改成绩之差的绝对值不超过2的情况有44种,则由古典概型的概率公式可得所求概率P==0.44.
16. 16、(2019·山西太原一模)某快递公司收取快递费用的标准如下:质量不超过1 kg的包裹收费10元;质量超过1 kg的包裹,除1 kg收费10元之外,超过1 kg的部分,每1 kg(不足1 kg,按1 kg计算)需再收5元.
该公司对近60天,每天揽件数量统计如下表:
(1)某人打算将A(0.3 kg),B(1.8 kg),C(1.5 kg)三件礼物随机分成两个包裹寄出,求该人支付的快递费不超过30元的概率;
(2)该公司从收取的每件快递的费用中抽取5元作为前台工作人员的工资和公司利润,剩余的作为其他费用.前台工作人员每人每天揽件不超过150件,工资100元,目前前台有工作人员3人,那么公司将前台工作人员裁员1人对提高公司利润是否更有利?
解:(1)由题意,寄出方式有以下三种可能:
所有3种可能中,有1种可能快递费未超过30元,根据古典概型概率计算公式,所求概率为.
(2)由题目中的天数得出频率,如下:
若不裁员,则每天可揽件的上限为450件,公司每日揽件数情况如下:
故公司每日利润为260×5-3×100=1 000(元);
若裁员1人,则每天可揽件的上限为300件,公司每日揽件数情况如下:
故公司平均每日利润为235×5-2×100=975(元).
综上,公司将前台工作人员裁员1人对提高公司利润不利.
8
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年水电工程运行维护管理合同示范文本.docx
- 2025年工程勘测设计合同模板.docx
- 2025年区域产品销售代理合同.docx
- 2025年经销商授权合同样本.docx
- 2025年员工住房资金借贷合同.docx
- 2025年轻钢建筑施工合同示例.docx
- 2025年网络推广托管合同.docx
- 2025年简明个人借款正式合同范例.docx
- 2025年房产按揭贷款合同范例.docx
- 2025年技术合同争议调解.docx
- 2025年电子版城市住宅租赁合同范本.docx
- 2025年简易转让合同协议书样本.docx
- 2025年投资顾问服务合同实例.docx
- 2025年经销合同模板.docx
- 2025年工业项目设计合同样本.docx