双曲线的性质A 知识讲解

上传人:无*** 文档编号:146700365 上传时间:2022-08-31 格式:DOC 页数:10 大小:727KB
收藏 版权申诉 举报 下载
双曲线的性质A 知识讲解_第1页
第1页 / 共10页
双曲线的性质A 知识讲解_第2页
第2页 / 共10页
双曲线的性质A 知识讲解_第3页
第3页 / 共10页
资源描述:

《双曲线的性质A 知识讲解》由会员分享,可在线阅读,更多相关《双曲线的性质A 知识讲解(10页珍藏版)》请在装配图网上搜索。

1、 双曲线的性质 编稿:张希勇 审稿:李霞 【学习目标】 1.理解双曲线的对称性、范围、定点、离心率、渐近线等简单性质. 2.能利用双曲线的简单性质求双曲线的方程. 3.能用双曲线的简单性质分析解决一些简单的问题. 【要点梳理】 【高清课堂:双曲线的性质 356749 知识要点二】 要点一、双曲线的简单几何性质 双曲线(a>0,b>0)的简单几何性质 [来源:学优gkstk] 范围 双曲线上所有的点都在两条平行直线x=-a和x=a的两侧,是无限延伸的。因此双曲线上点的横坐标满足x≤-a或x≥a. 对称性 对于双曲线标准方程(a>0,b>0

2、),把x换成-x,或把y换成-y,或把x、y同时换成-x、-y,方程都不变,所以双曲线(a>0,b>0)是以x轴、y轴为对称轴的轴对称图形,且是以原点为对称中心的中心对称图形,这个对称中心称为双曲线的中心。[来源:gkstk.Com] 顶点 ①双曲线与它的对称轴的交点称为双曲线的顶点。 ②双曲线(a>0,b>0)与坐标轴的两个交点即为双曲线的两个顶点,坐标分别为 A1(-a,0),A2(a,0),顶点是双曲线两支上的点中距离最近的点。 ③两个顶点间的线段A1A2叫作双曲线的实轴;设B1(0,-b),B2(0,b)为y轴上的两个点,则线段B1B2叫做双曲线的虚轴。实轴和虚轴的长度分别为

3、|A1A2|=2a,|B1B2|=2b。a叫做双曲线的实半轴长,b叫做双曲线的虚半轴长。 ①双曲线只有两个顶点,而椭圆有四个顶点,不能把双曲线的虚轴与椭圆的短轴混淆。 ②双曲线的焦点总在实轴上。 ③实轴和虚轴等长的双曲线称为等轴双曲线。 离心率 ①双曲线的焦距与实轴长的比叫做双曲线的离心率,用e表示,记作。[来源:学优] ②因为c>a>0,所以双曲线的离心率。 由c2=a2+b2,可得,所以决定双曲线的开口大小,越大,e也越大,双曲线开口就越开阔。所以离心率可以用来表示双曲线开口的大小程度。 ③等轴双曲线,所以离心率。 渐近线 经过点A2、A1作y轴的平行线x=±a,经过点

4、B1、B2作x轴的平行线y=±b,四条直线围成一个矩形(如图),矩形的两条对角线所在直线的方程是。 我们把直线叫做双曲线的渐近线;双曲线与它的渐近线无限接近,但永不相交。 【高清课堂:双曲线的性质 356749知识要点一、3】 要点二、双曲线两个标准方程几何性质的比较 标准方程 图形 性质[来源:gkstk.Com] 焦点[来源:学优gkstk] ,[来源:gkstk.Com] ,[来源:GKSTK.Com][来源:学优] 焦距 范围 , , 对称性 关于x轴、y轴和原点对称 顶点 轴 实轴长=,虚轴长=

5、 离心率 渐近线方程 要点诠释:双曲线的焦点总在实轴上,因此已知标准方程,判断焦点位置的方法是:看x2、y2的系数,如果x2项的系数是正的,那么焦点在x轴上;如果y2项的系数是正的,那么焦点在y轴上。 对于双曲线,a不一定大于b,因此不能像椭圆那样通过比较分母的大小来判定焦点在哪一条坐标轴上。 要点三、双曲线的渐近线 (1)已知双曲线方程求渐近线方程: 若双曲线方程为,则其渐近线方程为 已知双曲线方程,将双曲线方程中的“常数”换成“0”,然后因式分解即得渐近线方程。 (2)已知渐近线方程求双曲线方程: 若双曲线渐近线方程为,则可设双曲线方程为,根据已知条件,求

6、出即可。 (3)与双曲线有公共渐近线的双曲线 与双曲线有公共渐近线的双曲线方程可设为(,焦点在轴上,,焦点在y轴上) (4)等轴双曲线的渐近线 等轴双曲线的两条渐近线互相垂直,为,因此等轴双曲线可设为. 要点四、双曲线中a,b,c的几何意义及有关线段的几何特征: 双曲线标准方程中,a、b、c三个量的大小与坐标系无关,是由双曲线本身的形状大小所确定的,分别表示双曲线的实半轴长、虚半轴长和半焦距长,均为正数,且三个量的大小关系为:c>b>0,c>a>0,且c2=b2+a2。 双曲线,如图: (1)实轴长,虚轴长,焦距, (2)离心率:; (3)顶点到焦点的距离:,; (

7、4)中结合定义与余弦定理,将有关线段、、和角结合起来. (5)与焦点三角形有关的计算问题时,常考虑到用双曲线的定义及余弦定理(或勾股定理)、三角形面积公式相结合的方法进行计算与解题,将有关线段、、,有关角结合起来,建立、之间的关系. 【典型例题】 类型一:双曲线的简单几何性质 【高清课堂:双曲线的性质 356749例1】 例1.求双曲线的实轴长和虚轴长、顶点坐标、焦点坐标、渐近线方程与离心率. 【解析】 把方程化为标准方程,由此可知实半轴长,虚半轴长,∴ ∴双曲线的实轴长,虚轴长,顶点坐标,焦点坐标, 离心率,渐近线方程为 【总结升华】在几何性质的讨论中要注意a和2a,

8、b和2b的区别,另外也要注意焦点所在轴的不同,几何量也有不同的表示. 举一反三: 【变式1】双曲线mx2+y2=1的虚轴长是实轴长的2倍,则m等于(  ) A. B.-4 C.4 D. 【答案】A 【变式2】已知双曲线8kx2-ky2=2的一个焦点为,则k的值等于( ) A.-2 B.1 C.-1 D. 【答案】C 类型二:双曲线的渐近线 例2.已知双曲线方程,求渐近线方程。 (1);(2) 【解析】 (1)双曲线的渐近线方程为: 即 (2)双曲线的渐近线方程为: 即 【总结升华】双曲线的渐近线方程为,双曲线的渐近线

9、方程为,即;若双曲线的方程为(,焦点在轴上,,焦点在y轴上),则其渐近线方程为. 举一反三: 【变式1】求下列双曲线方程的渐近线方程 (1);(2);(3) 【答案】(1);(2);(3) 【变式2】中心在坐标原点,离心率为的圆锥曲线的焦点在y轴上,则它的渐近线方程为( ) A. B. C. D. 【答案】D 例3. 根据下列条件,求双曲线方程。 (1) 与双曲线有共同的渐近线,且过点; (2)一渐近线方程为,且双曲线过点 【解析】(1)解法一: 当焦点在x轴上时,设双曲线的方程为 由题意,得,解得, 所以双曲线的方程为 当焦点在y轴上时,

10、设双曲线的方程为 由题意,得,解得,(舍去) 综上所得,双曲线的方程为 解法二:设所求双曲线方程为(), 将点代入得, 所以双曲线方程为即 (2)依题意知双曲线两渐近线的方程是. 故设双曲线方程为, ∵点在双曲线上, ∴ ,解得, ∴所求双曲线方程为. 【总结升华】求双曲线的方程,关键是求、,在解题过程中应熟悉各元素(、、、及准线)之间的关系,并注意方程思想的应用。若已知双曲线的渐近线方程,可设双曲线方程为(). 举一反三: 【变式1】中心在原点,一个焦点在(0,3),一条渐近线为的双曲线方程是( ) A. B. C.

11、 D. 【答案】D 【变式2】过点(2,-2)且与双曲线有公共渐近线的双曲线是 ( ) A. B. C. D. 【答案】A 【变式3】设双曲线的渐近线方程为,则的值为 A.4 B.3 C.2 D.1 【答案】C 【变式4】双曲线与有相同的( ) A.实轴 B.焦点 C.渐近线 D.以上都不对 【答案】C 类型三:求双曲线的离心率或离心率的取值范围 例4. 已知是双曲线的左、右焦点,过且垂直于轴的直线与双曲

12、线的左支交于A、B两点,若是正三角形,求双曲线的离心率。 【解析】∵,是正三角形, ∴, ∴, ∴ 【总结升华】双曲线的离心率是双曲线几何性质的一个重要参数,求双曲线离心率的关键是由条件寻求a、c满足的关系式,从而求出 举一反三: 【高清课堂:双曲线的性质 356749例2】 【变式1】 (1) 已知双曲线的离心率, 过点A(0,-b)和B(a,0)的直线与原点间的距离为,求双曲线的方程. (2) 求过点(-1,3),且和双曲线有共同渐近线的双曲线方程. 【答案】(1) (2) 【变式2】 等轴双曲线的离心率为_________ 【答案】 【变式3】已知a、b

13、、c分别为双曲线的实半轴长、虚半轴长、半焦距,且方程ax2+bx+c=0无实根,则双曲线离心率的取值范围是(  ) A.1

展开阅读全文
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

相关资源

更多
正为您匹配相似的精品文档
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!