高中数学第10讲(必修2)空间几何体的三视图与直观图、表面积和体积.ppt

上传人:xian****812 文档编号:15165530 上传时间:2020-08-04 格式:PPT 页数:28 大小:2.48MB
收藏 版权申诉 举报 下载
高中数学第10讲(必修2)空间几何体的三视图与直观图、表面积和体积.ppt_第1页
第1页 / 共28页
高中数学第10讲(必修2)空间几何体的三视图与直观图、表面积和体积.ppt_第2页
第2页 / 共28页
高中数学第10讲(必修2)空间几何体的三视图与直观图、表面积和体积.ppt_第3页
第3页 / 共28页
资源描述:

《高中数学第10讲(必修2)空间几何体的三视图与直观图、表面积和体积.ppt》由会员分享,可在线阅读,更多相关《高中数学第10讲(必修2)空间几何体的三视图与直观图、表面积和体积.ppt(28页珍藏版)》请在装配图网上搜索。

1、(必修2) 第一章 空间几何体,第10讲,空间几何体的三视图与直观图、表面积和体积,知识体系,,1.了解柱、锥、台、球的概念、性质及他们之间的关系,能识别柱、锥、台、球的结构特征; 2.能识别各种简单几何体和简单组合体的三视图,并会用斜二测画法画出他们的直观图.能进行三视图与直观图的相互转化. 3.了解柱、锥、台、球的表面积和体积的计算公式,并能运用这些公式解决相关问题.,1.下列说法中正确的是( ),D,A.有两个面互相平行,其余各面都是平行四边形的几何体是棱柱 B.用一个平面去截一个圆锥,可以得到一个圆台和一个圆锥 C.有一个面是多边形,其余各面都是三角形的几何体是棱锥 D.将一个直角三

2、角形绕其一条直角边旋转一周,所得圆锥的母线长等于斜边长,由棱柱、圆锥、棱锥的定义知,A、B、C不正确,故选D.,2.已知正三角形ABC的边长为a,那么ABC的平面直观图ABC的面积为( ),D,A. a2 B. A2 C. a2 D. a2,如图,图、图所示的分别是实际图形和直观图.,从图可知,AB=AB=a, OC= OC= a, 所以CD=OCsin45= a, 所以SABC= ABCD = a a= a2, 故选D.,3.某几何体的直观图如图所示,该几何体的主(正)视图和左(侧)视图都正确的是( ),B,A. B. C.

3、 D.,主视图应有一条实对角线,且对角线应向上到下,左视时,看到一个矩形,且不能有实对角线,故淘汰A、D,故选B.,4.如图是一个空间几何体的三视图,若它的体积是3 ,则a= .,由三视图可知几何体为一个直三棱柱,底面三角形中,边长为2的边上的高为a, 则V=3 2a=3 ,所以a= .,1.柱、锥、台、球的结构特征,S底h,S底h,2(R2+Rh,R2h,R2+R,R2h,4R2,R3,2.三视图与直观图 (1)我们把光由一点向外散射形成的投影,叫做 ;在一束平行光照射下形成的投影,叫做 .在平行投影中,投影线正对着投影面时,叫做正投影,否则叫做斜投影. (2

4、)空间几何体的三视图:光线从几何体的前面向后面正投影得到的投影图叫做几何体的 ; 光线从几何体的左面向右面正投影得到的投影图叫做几何体的 ; 光线从几何体的上面向下面正投影得到的投影图叫做几何体的 .,中心投影,平行投影,正视图,侧视图,俯视图,(3)画三视图的基本要求是 . 高度一样, 长度一样, . 宽度一样. (4)斜二测画法的规则 在已知图中建立直角坐标系xOy,画直观图时,它们分别对应x轴和y轴,两轴交于点O,使xOy45,它们确定的平面表示水平面.,正视图和侧视图,俯视图和正视图,图和俯视图,侧视,已知图形中

5、平行于x轴或y轴的线段在直观图中分别画成 . 已知图形中平行于x轴的线段的长度,在直观图中 ;平行与y轴的线段的长度,在直观图中,长度为 .,平行于x轴或y轴,长度不变,原来的一半,题型一 三视图与直观图,例1,,一个空间几何体的三视图如图所示,则该几何体的体积为( ),A.2+2 B.4+2 C.2+ D.4+,C,本例题型的切入点和基本策略是将三视图还原成空间几何体,必要时作出直观图.,该空间几何体为一个圆柱和一个正四棱锥构成的组合体. 圆柱的底面半径为1,高为2,故其体积为2. 四棱锥的底面边长为 ,高为 , 所以其体积为 ( )2 = . 所

6、以该几何体的体积为2+ .选C,1.三视图是新课标中新增的内容,要求是能画,能识别,能应用.经常与立体几何中有关的计算问题融合在一起考查,如面积、体积的计算,考查学生的空间想象能力,因此我们应对常见的简单几何体的三视图有所理解,能够进行识别和判断. 2.注意三视图的特点:“正、侧一样高,正、俯一样长,俯、侧一样宽”. 3.空间想象能力与多观察实物相结合是解决此类问题的关键.,已知一几何体ABCDABCD的正视图、侧视图和俯视图分别为图中的所示.图中的四边形DCCD是面积为80的矩形;图中的四边形ABCD是一直角梯形,AB=2AD且BC=CD;且原图中CC=2BC. 请你画出该几何 体的直观

7、图(画 图时、尺寸比例 不做严格要求), 并求该几何体的 体积.,该几何体的直观图如下图所示的图. 设AD=x,BC=y. 由图得(2x)2+(y-x)2=y2, 所以2y=5x. 又由图可知2x2y=80. 由得x=2 ,所以AB=4 , 所以BC=y= x=5 ,CC=10 . 故该几何体的体积 V=S梯形ABCDCC= ABCC=280 .,空间想象力与多观察实物相结合是解决此类题的关键.,题型二 简单几何体的体积与表面积,例2,,如图是一个以A1B1C1为底面的直三棱柱被一平面所截得到的几何体,截面为ABC,已知A1B1=B1C1=2,A1B1C1=90,A

8、A1=4,BB1=3,CC1=2,求该几何体的体积及截面ABC的面积.,过C作平行于底面A1B1C1的截面A2B2C2,将该几何体分割为柱和锥或将其还原为直棱柱,然后计算其体积.,(方法一)过C作平行于A1B1C1的截面A2B2C,交AA1、BB1于A2、B2. 由直三棱柱性质可知中B2C平面ABB2A2, 则V=V柱A1B1C1-A2B2C+V锥C-ABB2A2 = 222+ (1+2)22 =6.,(方法二)延长BB1、CC1到B3、C3,使得BB1=CC3=AA1. 则V=V柱A1B1C1-AB3C3-V锥A-BB3C3C = 224- (1+2)22 =6. 在ABC中,AB=

9、 = , BC= = , AC= =2 . 则SABC= 2 = .,处理不规则几何体的体积时,或将其分割柱、锥、台或将补体为柱、锥、台,然后计算其体积.,题型三 简单组合体问题,例3,,有一个圆锥的侧面展开图是一个半径为5,圆心角为 的扇形,在这个圆锥中内接一个高为x的圆柱. (1)求圆锥的体积; (2)当x为何值时,圆柱的侧面积最大?,由圆锥的侧面展开图,圆心角与半径的关系可求圆锥的母线长,底面半径和高.内接圆柱的侧面积是高x的函数,再用代数方法求最值.,(1)因为圆锥侧面展开图的半径为5,所以圆锥的母线长为5.设圆锥的底面半径为r,则2r=

10、5 ,所以r=3,则圆锥的高为4,故体积V= r24=12.,(2)右图为轴截面图,这个图为等腰三角形中内接一个矩形. 设圆柱的底面半径为y, 则 = ,得y=3- x. 圆柱的侧面积 S(x)=2(3- x)x = (4x-x2)= 4-(x-2)2(0 x4). 当x=2时,S(x)有最大值6. 所以当圆柱的高为2时,有最大侧面积6.,旋转体的接、切问题常考虑其相应轴截面内的接、切情况,实际是把空间图形平面化.,一球与边长为2的正方体的各棱相切,则球的表面积是 ,体积是 .,正方体相对棱之间的距离为球的直径2R. 则有2R=2 ,所以R= , 所以S球=4R2=8,V球= R3= .,8,,1.充分熟记柱、锥、台、球的概念及其结构特征,并能善于运用这些特征描述简单物体的结构. 2.三视图的识别规则是:“正、侧同高,正、俯同长,俯、侧同宽”. 3.要用联系的观点来认识柱、锥、台、球的性质,在给出相关体积、表面积公式的前提下能准确计算其体积和表面积. 4.将空间问题转化化归为平面图形问题是解决立体几何问题的最基本、最常用的方法.,课后再做好复习巩固. 谢谢!,再见!,

展开阅读全文
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

相关资源

更多
正为您匹配相似的精品文档
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!