MATLAB有限元分析与应用.ppt

上传人:za****8 文档编号:15800783 上传时间:2020-09-07 格式:PPT 页数:55 大小:803.50KB
收藏 版权申诉 举报 下载
MATLAB有限元分析与应用.ppt_第1页
第1页 / 共55页
MATLAB有限元分析与应用.ppt_第2页
第2页 / 共55页
MATLAB有限元分析与应用.ppt_第3页
第3页 / 共55页
资源描述:

《MATLAB有限元分析与应用.ppt》由会员分享,可在线阅读,更多相关《MATLAB有限元分析与应用.ppt(55页珍藏版)》请在装配图网上搜索。

1、2020/9/7,1,,第三章 MATLAB有限元分析与应用,,,,,,3-1 弹簧元,结构分析编程及软件应用,3-2 线性杆元,3-3 二次杆元,3-4 平面桁架元,3-5 空间桁架元,3-6 梁元,2020/9/7,2,,3-1 弹簧元,,,结构分析编程及软件应用,1、有限元方法的步骤:,离散化域,形成单刚矩阵,集成整体刚度矩阵,引入边界条件,求解方程,后处理,2020/9/7,3,,,,,,,结构分析编程及软件应用,2、基本方程,3-1 弹簧元,弹簧元是总体和局部坐标一致的一维有限单元,每个弹簧元有两个节点(node),,,,,单刚矩阵为:,,总刚矩阵:,,结构方程:,单元节点力:,

2、,2020/9/7,4,,,,结构分析编程及软件应用,3、MATLAB函数编写,3-1 弹簧元,%SpringElementStiffness This function returns the element stiffness %matrix for a spring with stiffness k. %The size of the element stiffness matrix is 2 x 2.,3.1 单元刚度矩阵的形成,y = k -k ; -k k;,function y = SpringElementStiffness(k),2020/9/7,5,,,,结构分析编程

3、及软件应用,3、MATLAB函数编写,3-1 弹簧元,%SpringAssemble This function assembles the element stiffness % matrix k of the spring with nodes i and j into the % global stiffness matrix K. % This function returns the global stiffness matrix K % after the element stiffness matrix k is assembled.,,,,3.

4、2 整体刚度矩阵的形成,K(i,i) = K(i,i) + k(1,1); K(i,j) = K(i,j) + k(1,2); K(j,i) = K(j,i) + k(2,1); K(j,j) = K(j,j) + k(2,2); y = K;,function y = SpringAssemble(K,k,i,j),2020/9/7,6,,,,结构分析编程及软件应用,3、MATLAB函数编写,3-1 弹簧元,%SpringElementForces This function returns the element nodal force % vector given the e

5、lement stiffness matrix k % and the element nodal displacement vector u.,,,,3.3 节点载荷计算,y = k * u;,function y = SpringElementForces(k,u),2020/9/7,7,,,,结构分析编程及软件应用,4、实例计算分析应用,3-1 弹簧元,,,,如图所示二弹簧元结构,假定k1=100kN/m,k2=200kN/m,P=15kN。 求:系统的整体刚度矩阵; 节点2、3的位移; 节点1的支反力; 每个弹簧的内力,解:,步骤1:离散化域,2020/9/7,

6、8,,,,结构分析编程及软件应用,4、实例计算分析应用,3-1 弹簧元,,,,步骤2:形成单元刚度矩阵,k1=SpringElementStiffness(100);,k1 = 100 -100 -100 100,k2=SpringElementStiffness(200);,k2 = 200 -200 -200 200,调用 function y = SpringElementStiffness(k)函数,2020/9/7,9,,,,结构分析编程及软件应用,4、实例计算分析应用,3-1 弹簧元,,,,步骤3:集成整体刚度矩阵,调用 function y = SpringAssembl

7、e(K,k,i,j)函数,n=3; K = zeros(n,n);,K = SpringAssemble(K,k1,1,2),K = 0 0 0 0 0 0 0 0 0,K = SpringAssemble(K,k2,2,3),K = 100 -100 0 -100 100 0 0 0 0,K = 100 -100 0 -100 300 -200 0 -200 200,2020/9/7,10,,,,结构分析编程及软件应用,4、实例计算分析应用,3-1 弹簧元,,,,步骤4:引入边界条件,,已知边界条件:,,2020/9/7,11,,

8、,,结构分析编程及软件应用,5、实例计算分析应用,3-1 弹簧元,,,,步骤5:解方程,,U=zeros(2,1); F=0;15; K = K(2:3,2:3); U=KF,U=inv(K)*F,K(1,:)=; K(:,1)=;,,U = 0.1500 0.2250,2020/9/7,12,,,,结构分析编程及软件应用,5、实例计算分析应用,2-1 弹簧元,,,,步骤6:后处理,,,U=0;U,U = 0 0.1500 0.2250,F=K*U,F = -15.0000 0.0000 15.0000,u1=U(1:2); f1=SpringElementForces(k1

9、,u1);,f1 = -15.0000 15.0000,u2=U(2:3); f2=SpringElementForces(k2,u2);,f2 = -15.0000 15.0000,2020/9/7,13,,,,结构分析编程及软件应用,5、实例计算分析应用,3-1 弹簧元,,,,,,k1=SpringElementStiffness(100); k2=SpringElementStiffness(200); n=3; K=zeros(n,n); K=SpringAssemble(K,k1,1,2); K=SpringAssemble(K,k2,2,3); U=zeros(2,1); F=0

10、;15; K = K(2:3,2:3); KK=K; U=KF U=0;U; F=K*U; u1=U(1:2); f1=SpringElementForces(k1,u1) u2=U(2:3); f2=SpringElementForces(k2,u2),2020/9/7,14,,,,,,,结构分析编程及软件应用,1、基本方程,3-2 线性杆元,线性杆元也是总体和局部坐标一致的一维有限单元,用线性函数描述,每个线性杆元有两个节点(node),,,,,单刚矩阵为:,,总刚矩阵:,结构方程:,单元节点力:,2020/9/7,15,,,,结构分析编程及软件应用,2、MATLAB函数编写,%Line

11、arBarElementStiffness This function returns the element % stiffness matrix for a linear bar with % modulus of elasticity E, cross-sectional % area A, and length L. The size of the % element stiffness matrix is 2 x 2.,,,2.1 单元刚度矩阵的形成,y = E*A/L -E*A/L ; -E*A

12、/L E*A/L;,function y = LinearBarElementStiffness(E,A,L),3-2 线性杆元,2020/9/7,16,,,,结构分析编程及软件应用,2、MATLAB函数编写,%LinearBarAssemble This function assembles the element stiffness % matrix k of the linear bar with nodes i and j % into the global stiffness matrix K. % This function ret

13、urns the global stiffness % matrix K after the element stiffness matrix % k is assembled.,,,,2.2 整体刚度矩阵的形成,K(i,i) = K(i,i) + k(1,1); K(i,j) = K(i,j) + k(1,2); K(j,i) = K(j,i) + k(2,1); K(j,j) = K(j,j) + k(2,2); y = K;,function y =LinearBarAssemble(K,k,i,j),3-2 线性杆元,2020/9/7,17,,,,结构

14、分析编程及软件应用,2、MATLAB函数编写,%LinearBarElementForces This function returns the element nodal % force vector given the element stiffness % matrix k and the element nodal % displacement vector u.,,,,2.3 节点载荷计算,y = k * u;,function y = LinearBarElementForces(k,u),3-2 线性杆元,2020/9

15、/7,18,,,,结构分析编程及软件应用,2、MATLAB函数编写,%LinearBarElementStresses This function returns the element nodal % stress vector given the element stiffness % matrix k, the element nodal displacement % vector u, and the cross-sectional area A.,,,,2.4 节点应力计算,y = k * u/A;,function y

16、 = LinearBarElementStresses(k, u, A),3-2 线性杆元,2020/9/7,19,,,,结构分析编程及软件应用,3、实例计算分析应用,,,,如图所示二线性杆元结构,假定E=210MPa,A=0.003m2,P=10kN, 节点3的右位移为0.002m。 求:系统的整体刚度矩阵; 节点2的位移; 节点1、3的支反力; 每个杆件的应力,解:,步骤1:离散化域,3-2 线性杆元,2020/9/7,20,,,,结构分析编程及软件应用,3、实例计算分析应用,,,,步骤2:形成单元刚度矩阵,k1=LinearBarElementStiffness(E,A

17、,L1),k2=LinearBarElementStiffness(E,A,L2),调用 function y = LinearBarElementStiffness(E,A,L)函数,3-2 线性杆元,2020/9/7,21,,,,结构分析编程及软件应用,3、实例计算分析应用,,,,步骤3:集成整体刚度矩阵,调用 function y = LinearBarAssemble(K,k,i,j)函数,n=3; K = zeros(n,n),K = LinearBarAssemble (K,k1,1,2),K = 0 0 0 0 0 0 0 0 0,K = LinearBarA

18、ssemble (K,k2,2,3),3-2 线性杆元,2020/9/7,22,,,,结构分析编程及软件应用,3、实例计算分析应用,,,,步骤4:引入边界条件,,已知边界条件:,3-2 线性杆元,2020/9/7,23,,,,结构分析编程及软件应用,3、实例计算分析应用,,,,步骤5:解方程,,U=zeros(1,1); U3=0.002 F=-10; K = K(2,2) 105000 K0 = K(2,3); -630000 U=K(F-K0*U3),U =0.0012,3-2 线性杆元,2020/9/7,24,,,,结构分析编程及软件应用,3、实例计算分析应用,,,步骤6:后处

19、理,,U=0;U;0.002,U = 0 0.0012 0.0002,F=K*U,F = -500.0000 -10.0000 510.0000,u1=U(1:2); f1= LinearBarElementForces(k1,u1) sigma1=LinearBarElementStresses(k1, u1, A),u2=U(2:3); f2= LinearBarElementForces(k2,u2) sigma2=LinearBarElementStresses(k2, u2, A),3-2 线性杆元,2020/9/7,25,,,,结构分析编程及软件应用,3、实例计算分析应用

20、,,,,,,E=210E6; A=0.003; L1=1.5; L2=1; k1= LinearBarElementStiffness(E,A,L1); k2= LinearBarElementStiffness(E,A,L2); n=3; K = zeros(n,n); K = LinearBarAssemble (K,k1,1,2); K = LinearBarAssemble (K,k2,2,3); U=zeros(1,1); U3=0.002; F=-10;,3-2 线性杆元,KK=K; K=K(2,2); K0=K(2,3); U=K(F-K0*U3); U=0;U;U3; F=K

21、K*U u1=U(1:2); f1= LinearBarElementForces(k1,u1) sigma1=LinearBarElementStresses(k1, u1, A) u2=U(2:3); f2= LinearBarElementForces(k2,u2) sigma2=LinearBarElementStresses(k2, u2, A),,2020/9/7,26,,,,,,,结构分析编程及软件应用,1、基本方程,3-3 二次杆元,二次杆元也是总体和局部坐标一致的一维有限单元,用二次方程描述,每个线性杆元有三个节点(node),,,,单刚矩阵为:,总刚矩阵:,结构方程:,单

22、元节点力:,2020/9/7,27,,,,结构分析编程及软件应用,2、MATLAB函数编写,%QuadraticBarElementStiffness This function returns the element % stiffness matrix for a quadratic bar % with modulus of elasticity E, % cross-sectional area A, and length L. % The size of the element stiff

23、ness % matrix is 3 x 3.,,,2.1 单元刚度矩阵的形成,y = E*A/(3*L)*7 1 -8 ; 1 7 -8 ; -8 -8 16;,function y = QuadraticBarElementStiffness(E,A,L),3-3 二次杆元,2020/9/7,28,,,,结构分析编程及软件应用,2、MATLAB函数编写,%QuadraticBarAssemble This function assembles the element stiffness % matrix k of the quadratic b

24、ar with nodes i, j % and m into the global stiffness matrix K. % This function returns the global stiffness % matrix K after the element stiffness matrix % k is assembled.,,,,2.2 整体刚度矩阵的形成,K(i,i) = K(i,i) + k(1,1); K(i,j) = K(i,j) + k(1,2); K(i,m) = K(i,m) + k(1,

25、3); K(j,i) = K(j,i) + k(2,1); K(j,j) = K(j,j) + k(2,2);,function y =QuadraticBarAssemble(K,k,i,j,m),3-3 二次杆元,K(j,m) = K(j,m) + k(2,3); K(m,i) = K(m,i) + k(3,1); K(m,j) = K(m,j) + k(3,2); K(m,m) = K(m,m) + k(3,3); y = K;,2020/9/7,29,,,,结构分析编程及软件应用,2、MATLAB函数编写,%QuadraticBarElementForces This functio

26、n returns the element nodal % force vector given the element stiffness % matrix k and the element nodal % displacement vector u.,,,2.3 节点载荷计算,y = k * u;,function y = QuadraticBarElementForces(k,u),3-3 二次杆元,2020/9/7,30,,,,结构分析编程及软件应用,2、MATLAB函数编写,%QuadraticBarElem

27、entStresses This function returns the element % nodal stress vector given the element % stiffness matrix k, the element nodal % displacement vector u, and the % cross-sectional area A.,,,,2.4 节点应力计算,y = k * u/A;,function y = QuadraticBarElementStresses

28、(k, u, A),3-3 二次杆元,2020/9/7,31,,,,结构分析编程及软件应用,3、实例计算分析应用,,,,如图所示双二次杆元结构,假定E=210MPa,A=0.003m2 求:系统的整体刚度矩阵; 节点2、3、4、5的位移; 节点1的支反力; 每个杆件的应力,解:,3-3 二次杆元,2020/9/7,32,,,,结构分析编程及软件应用,3、实例计算分析应用,,,,,,E=210E6; A=0.003; L=2; k1= QuadraticBarElementStiffness(E,A,L); k2= QuadraticBarElementStiffness(E,A,L

29、); n=5; K = zeros(n,n); K =QuadraticBarAssemble(K,k1,1,3,2); K =QuadraticBarAssemble(K,k2,3,5,4); U=zeros(4,1); F=5;-10;-7;10;,KK=K; K=K(2:n,2:n); U=KF; U=0;U; F=KK*U; u1=U(1);U(3);U(2); f1= QuadraticBarElementForces(k1,u1); sigma1=QuadraticBarElementStresses(k1, u1, A); u2=U(3);U(5);U(4); f2=Quadra

30、ticBarElementForces(k2,u2); sigma2=QuadraticBarElementStresses(k2, u2, A);,,3-3 二次杆元,2020/9/7,33,,,,,,,结构分析编程及软件应用,1、基本方程,3-4 平面桁架元,平面桁架元是既有局部坐标又有总体坐标二维有限元,用线性函数描述,每个平面桁架元有二个节点(node),,,,单刚矩阵为:,总刚矩阵:,结构方程:,单元节点力:,2020/9/7,34,,,,结构分析编程及软件应用,2、MATLAB函数编写,%PlaneTrussElementLength This function returns

31、 the length of the % plane truss element whose first node has % coordinates (x1,y1) and second node has % coordinates (x2,y2).,,2.1 计算单元长度,y = sqrt((x2-x1)*(x2-x1) + (y2-y1)*(y2-y1));,function y = PlaneTrussElementLength(x1,y1,x2,y2),3-4 平面桁架元,2020/9/7,35,,,,结构分析编程及软件应用,2、MATLAB函数

32、编写,%PlaneTrussElementStiffness This function returns the element % stiffness matrix for a plane truss % element with modulus of elasticity E, % cross-sectional area A, length L, and % angle theta (in degrees). % The size of the element stiffness % matrix is

33、4 x 4.,,,2.2 单元刚度矩阵的形成,x = theta*pi/180; C = cos(x); S = sin(x); y = E*A/L*C*C C*S -C*C -C*S ; C*S S*S -C*S -S*S ; -C*C -C*S C*C C*S ; -C*S -S*S C*S S*S;,function y = PlaneTrussElementStiffness(E,A,L, theta),3-4 平面桁架元,2020/9/7,36,,,,结构分析编程及软件应用,2、MATLAB函数编写,%PlaneTrussAssemble This function assembl

34、es the element stiffness % matrix k of the plane truss element with nodes % i and j into the global stiffness matrix K. % This function returns the global stiffness % matrix K after the element stiffness matrix k is assembled.,,,,2.3 整体刚度矩阵的形成,K(2*i-1,2*i-1) = K(2*i-1,2*i-1) + k(

35、1,1); K(2*i-1,2*i) = K(2*i-1,2*i) + k(1,2); K(2*i-1,2*j-1) = K(2*i-1,2*j-1) + k(1,3); K(2*i-1,2*j) = K(2*i-1,2*j) + k(1,4); K(2*i,2*i-1) = K(2*i,2*i-1) + k(2,1); K(2*i,2*i) = K(2*i,2*i) + k(2,2); K(2*i,2*j-1) = K(2*i,2*j-1) + k(2,3); K(2*i,2*j) = K(2*i,2*j) + k(2,4);,function y =PlaneTrussAssemble(K

36、,k,i,j),K(2*j-1,2*i-1) = K(2*j-1,2*i-1) + k(3,1); K(2*j-1,2*i) = K(2*j-1,2*i) + k(3,2); K(2*j-1,2*j-1) = K(2*j-1,2*j-1) + k(3,3); K(2*j-1,2*j) = K(2*j-1,2*j) + k(3,4); K(2*j,2*i-1) = K(2*j,2*i-1) + k(4,1); K(2*j,2*i) = K(2*j,2*i) + k(4,2); K(2*j,2*j-1) = K(2*j,2*j-1) + k(4,3); K(2*j,2*j) = K(2*j,2*j

37、) + k(4,4); y = K;,3-4 平面桁架元,,2020/9/7,37,,,,结构分析编程及软件应用,2、MATLAB函数编写,%PlaneTrussElementForce This function returns the element force % given the modulus of elasticity E, the % cross-sectional area A, the length L, % the angle theta (in degrees), and the % element nodal disp

38、lacement vector u.,,,2.4 节点载荷计算,x = theta * pi/180; C = cos(x); S = sin(x); y = E*A/L*-C -S C S* u;,function y = PlaneTrussElementForce(E,A,L,theta,u),3-4 平面桁架元,2020/9/7,38,,,,结构分析编程及软件应用,2、MATLAB函数编写,%PlaneTrussElementStress This function returns the element stress % given the modulus of ela

39、sticity E, the % the length L, the angle theta (in % degrees), and the element nodal % displacement vector u.,,,,2.5 节点应力计算,x = theta * pi/180; C = cos(x); S = sin(x); y = E/L*-C -S C S* u;,function y = PlaneTrussElementStress(E,L,theta,u),3-4 平面桁架元,2020/9/7,39,,,,结构分析编程及软件应用,3、实例

40、计算分析应用,,,,如图所示平面桁架结构,假定E=210MPa,A=0.0004m2 求:系统的整体刚度矩阵; 节点2的水平位移; 节点3的水平竖向位移; 节点1、2的支反力; 每跟杆件的应力,3-4 平面桁架元,2020/9/7,40,,,,结构分析编程及软件应用,1、基本方程,3-5 空间桁架元,空间桁架元是既有局部坐标又有总体坐标三维有限元,用线性函数描 述。各单元之间通过铰接系统连接,只能传递力,而不能传递弯矩,每个桁架元有二个节点(node),,,,,2020/9/7,41,,,,结构分析编程及软件应用,1、基本方程,,3-5 空间桁架元,,,,总刚矩阵:,结

41、构方程:,单元节点力:,单刚矩阵为:,2020/9/7,42,,,,结构分析编程及软件应用,2、MATLAB函数编写,%SpaceTrussElementLength This function returns the length of the % space truss element whose first node has % coordinates (x1,y1,z1) and second node has % coordinates (x2,y2,z2).,,2.1 计算单元长度,y = sqrt((x2-x1)*(x2-x1) + (y2-y

42、1)*(y2-y1) + (z2-z1)*(z2-z1));,function y = SpaceTrussElementLength(x1,y1,z1,x2,y2,z2),3-5 空间桁架元,2020/9/7,43,,,,结构分析编程及软件应用,2、MATLAB函数编写,%SpaceTrussElementStiffness This function returns the element % stiffness matrix for a space truss % element with modulus of elasticity E,

43、 % cross-sectional area A, length L, and % angles thetax, thetay, thetaz % (in degrees). The size of the element % stiffness matrix is 6 x 6.,,,2.2 单元刚度矩阵的形成,x = thetax*pi/180; u = thetay*pi/180; v = thetaz*pi/180; Cx = cos(x); Cy = cos(u); Cz = cos(v)

44、; w = Cx*Cx Cx*Cy Cx*Cz ; Cy*Cx Cy*Cy Cy*Cz ; Cz*Cx Cz*Cy Cz*Cz; y = E*A/L*w -w ; -w w;,function y = SpaceTrussElementStiffness(E,A,L,thetax,thetay,thetaz),3-5 空间桁架元,2020/9/7,44,,,,结构分析编程及软件应用,2、MATLAB函数编写,%SpaceTrussAssemble This function assembles the element stiffness % matrix k of the

45、space truss element with nodes % i and j into the global stiffness matrix K. % This function returns the global stiffness % matrix K after the element stiffness matrix % k is assembled.,,,,2.3 整体刚度矩阵的形成,K(3*i-2,3*i-2) = K(3*i-2,3*i-2) + k(1,1); K(3*i-2,3*i-1) = K(3*i-2,3*i-1) + k

46、(1,2); K(3*i-2,3*i) = K(3*i-2,3*i) + k(1,3); K(3*i-2,3*j-2) = K(3*i-2,3*j-2) + k(1,4); K(3*i-2,3*j-1) = K(3*i-2,3*j-1) + k(1,5); K(3*i-2,3*j) = K(3*i-2,3*j) + k(1,6); K(3*i-1,3*i-2) = K(3*i-1,3*i-2) + k(2,1); K(3*i-1,3*i-1) = K(3*i-1,3*i-1) + k(2,2); K(3*i-1,3*i) = K(3*i-1,3*i) + k(2,3); K(3*i-1,3*j

47、-2) = K(3*i-1,3*j-2) + k(2,4); K(3*i-1,3*j-1) = K(3*i-1,3*j-1) + k(2,5); K(3*i-1,3*j) = K(3*i-1,3*j) + k(2,6);,function y =SpaceTrussAssemble(K,k,i,j),3-5 空间桁架元,2020/9/7,45,,,,结构分析编程及软件应用,2、MATLAB函数编写,,,,2.3 整体刚度矩阵的形成,3-5 空间桁架元,K(3*j-1,3*i-2) = K(3*j-1,3*i-2) + k(5,1); K(3*j-1,3*i-1) = K(3*j-1,3*i

48、-1) + k(5,2); K(3*j-1,3*i) = K(3*j-1,3*i) + k(5,3); K(3*j-1,3*j-2) = K(3*j-1,3*j-2) + k(5,4); K(3*j-1,3*j-1) = K(3*j-1,3*j-1) + k(5,5); K(3*j-1,3*j) = K(3*j-1,3*j) + k(5,6); K(3*j,3*i-2) = K(3*j,3*i-2) + k(6,1); K(3*j,3*i-1) = K(3*j,3*i-1) + k(6,2); K(3*j,3*i) = K(3*j,3*i) + k(6,3); K(3*j,3*j-2) = K

49、(3*j,3*j-2) + k(6,4); K(3*j,3*j-1) = K(3*j,3*j-1) + k(6,5); K(3*j,3*j) = K(3*j,3*j) + k(6,6); y = K;,K(3*i,3*i-2) = K(3*i,3*i-2) + k(3,1); K(3*i,3*i-1) = K(3*i,3*i-1) + k(3,2); K(3*i,3*i) = K(3*i,3*i) + k(3,3); K(3*i,3*j-2) = K(3*i,3*j-2) + k(3,4); K(3*i,3*j-1) = K(3*i,3*j-1) + k(3,5); K(3*i,3*j) =

50、K(3*i,3*j) + k(3,6); K(3*j-2,3*i-2) = K(3*j-2,3*i-2) + k(4,1); K(3*j-2,3*i-1) = K(3*j-2,3*i-1) + k(4,2); K(3*j-2,3*i) = K(3*j-2,3*i) + k(4,3); K(3*j-2,3*j-2) = K(3*j-2,3*j-2) + k(4,4); K(3*j-2,3*j-1) = K(3*j-2,3*j-1) + k(4,5); K(3*j-2,3*j) = K(3*j-2,3*j) + k(4,6);,,2020/9/7,46,,,,结构分析编程及软件应用,2、MATLA

51、B函数编写,%SpaceTrussElementForce This function returns the element force % given the modulus of elasticity E, the % cross-sectional area A, the length L, % the angles thetax, thetay, thetaz % (in degrees), and the element nodal % displacement vector u.,,2.4 节点载荷计算,x = thet

52、ax * pi/180; w = thetay * pi/180; v = thetaz * pi/180; Cx = cos(x); Cy = cos(w); Cz = cos(v); y = E*A/L*-Cx -Cy -Cz Cx Cy Cz*u;,function y = SpaceTrussElementForce(E,A,L,thetax,thetay,thetaz,u),3-5 空间桁架元,2020/9/7,47,,,,结构分析编程及软件应用,2、MATLAB函数编写,%SpaceTrussElementStress This function returns the elem

53、ent stress % given the modulus of elasticity E, the % length L, the angles thetax, thetay, % thetaz (in degrees), and the element % nodal displacement vector u.,,,,2.5 节点应力计算,x = thetax * pi/180; w = thetay * pi/180; v = thetaz * pi/180; Cx = cos(x); Cy = cos(w); Cz = cos(v);

54、 y = E/L*-Cx -Cy -Cz Cx Cy Cz*u;,function y = SpaceTrussElementStress(E,L,thetax,thetay,thetaz,u),3-5 空间桁架元,2020/9/7,48,,,,结构分析编程及软件应用,3、实例计算分析应用,,,,如图所示空间桁架结构,假定E=210MPa,A14=0.001m2 A24=0.002m2,A34=0.001m2,P=12kN 求:系统的整体刚度矩阵; 节点4的水平位移; 节点3的水平竖向位移; 节点1、2、3的支反力; 每跟杆件的应力,3-5 空间桁架元,2020/9/7,4

55、9,,,,结构分析编程及软件应用,1、基本方程,3-6 梁元,梁元是总体坐标与局部坐标一致的二维有限元,用线性函数描 述。各单元之间通过铰接系统连接,只能传递力,而不能传递弯矩,每个梁元有二个节点(node),,,,,单刚矩阵为:,,,,总刚矩阵:,结构方程:,单元节点力:,2020/9/7,50,,,,结构分析编程及软件应用,2、MATLAB函数编写,%BeamElementStiffness This function returns the element % stiffness matrix for a beam % element with

56、 modulus of elasticity E, % moment of inertia I, and length L. % The size of the element stiffness % matrix is 4 x 4.,,,2.1单元刚度矩阵的形成,y = E*I/(L*L*L)*12 6*L -12 6*L ; 6*L 4*L*L -6*L 2*L*L ; -12 -6*L 12 -6*L ; 6*L 2*L*L -6*L 4*L*L;,function y = BeamElementStiffness(E,I,L),3-

57、6 梁元,2020/9/7,51,,,,结构分析编程及软件应用,2、MATLAB函数编写,%BeamAssemble This function assembles the element stiffness % matrix k of the beam element with nodes % i and j into the global stiffness matrix K. % This function returns the global stiffness % matrix K after the element stiffness matrix %

58、 k is assembled.,,,,2.2 整体刚度矩阵的形成,K(2*i-1,2*i-1) = K(2*i-1,2*i-1) + k(1,1); K(2*i-1,2*i) = K(2*i-1,2*i) + k(1,2); K(2*i-1,2*j-1) = K(2*i-1,2*j-1) + k(1,3); K(2*i-1,2*j) = K(2*i-1,2*j) + k(1,4); K(2*i,2*i-1) = K(2*i,2*i-1) + k(2,1); K(2*i,2*i) = K(2*i,2*i) + k(2,2); K(2*i,2*j-1) = K(2*i,2*j-1) + k(2

59、,3); K(2*i,2*j) = K(2*i,2*j) + k(2,4);,function y =BeamAssemble(K,k,i,j),3-6 梁元,K(2*j-1,2*i-1) = K(2*j-1,2*i-1) + k(3,1); K(2*j-1,2*i) = K(2*j-1,2*i) + k(3,2); K(2*j-1,2*j-1) = K(2*j-1,2*j-1) + k(3,3); K(2*j-1,2*j) = K(2*j-1,2*j) + k(3,4); K(2*j,2*i-1) = K(2*j,2*i-1) + k(4,1); K(2*j,2*i) = K(2*j,2*

60、i) + k(4,2); K(2*j,2*j-1) = K(2*j,2*j-1) + k(4,3); K(2*j,2*j) = K(2*j,2*j) + k(4,4); y = K;,2020/9/7,52,,,,结构分析编程及软件应用,2、MATLAB函数编写,%BeamElementForces This function returns the element nodal force % vector given the element stiffness matrix k % and the element nodal displacement vector u.,2.

61、4 节点载荷计算,y = k * u;,function y = BeamElementForces(k,u),3-6 梁元,2020/9/7,53,,,,结构分析编程及软件应用,2、MATLAB函数编写,%BeamElementShearDiagram This function plots the shear force % diagram for the beam element with nodal % force vector f and length L.,2.4 绘制剪力图,x = 0 ; L; z = f(1) ; -f(3); hold on; ti

62、tle(Shear Force Diagram); plot(x,z); y1 = 0 ; 0; plot(x,y1,k),function y = BeamElementShearDiagram(f, L),3-6 梁元,2020/9/7,54,,,,结构分析编程及软件应用,2、MATLAB函数编写,%BeamElementMomentDiagram This function plots the bending moment % diagram for the beam element with nodal % force vector f and length L.,2.4 绘制弯矩图,x = 0 ; L; z = -f(2) ; f(4); hold on; title(Bending Moment Diagram); plot(x,z); y1 = 0 ; 0; plot(x,y1,k),function y = BeamElementMomentDiagram(f, L),3-6 梁元,2020/9/7,55,,,,结构分析编程及软件应用,3、实例计算分析应用,,,,3-6 梁元,

展开阅读全文
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

相关资源

更多
正为您匹配相似的精品文档
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!