排单层贝雷桁架栈桥设计及验算书钢管桩基础



《排单层贝雷桁架栈桥设计及验算书钢管桩基础》由会员分享,可在线阅读,更多相关《排单层贝雷桁架栈桥设计及验算书钢管桩基础(12页珍藏版)》请在装配图网上搜索。
1、拟建栈桥计算书 1、概述 1.1 设计说明 本工程项目拟建栈桥结构形式为4排单层贝雷桁架,使用900型标准贝雷花架进行横向联结,栈桥纵向标准设计跨径为12m,桥面系为桥面板;横向分配梁为I22,间距为0.75m;在横向分配梁纵向铺设I12.6工字钢,间距为0.24米,I12.6工字钢要花焊在I25横向分配梁上;桥面板采用δ=8mm钢板,与I12.6工字钢进行焊接;基础采用φ630×10mm钢管桩,按柱桩设计,为加强基础的整体稳定性,每排钢管桩间均采用[12号槽钢连接成整体,桩长9米,外包1.0米厚C25混凝土;墩顶横梁采用2工25a。栈桥布置结构形式如下图1。 图1、栈桥一般构造
2、图(单位:cm) 栈桥桥墩按线路前进方向编号为1#~16#墩,从功能上分两种,分别为单排桩一般桩、双排桩制动桩,两种桥墩结构形式及功能说明如下: 单排桩一般桩:单排、每排3根桩,桩中心间距2.2m,桩顶标高m,桩间设置横向连接系,桩顶设置双排I25a工字钢支撑贝雷架主梁,与贝雷架主梁间不连接,不传递纵向水平力。 双排桩制动桩:在1#、8#、9#和16#墩设置,共4处。双排(中心排距3m),每排3根桩,桩中心间距为2.2m,桩顶标高m,桩间设置横向连接系,桩顶设置双排I25a工字钢支撑贝雷架主梁,设置纵向拉杆固定贝雷架主梁以纵向水平力。 栈桥行车道两侧设置方木路缘,桥面两边设置钢
3、管护栏,栏杆高度为1.1m,采用∠75×75×8角钢焊接在横向分配梁I25a工字钢上,每根分配梁上焊一根,主要电缆和通水管等设施搁置在上面,减少对栈桥交通的影响。 1.2 设计依据 1)《公路桥涵设计通用规范》 (JTG D60-2004) 2)《公路桥涵地基与基础设计规范》 (JTJ024-85) 3)《公路桥涵钢结构及木结构设计规范》 (JTJ025-86) 4)《公路桥涵施工技术规范》 (JTJ041—2000) 1.
4、3 技术标准 1)设计顶标高; 2)设计控制荷载: 栈桥运营期间:施工重车荷载主要表现在9m3混凝土罐车,砼罐车自重20T+砼重22.5T,考虑1.4的动力系数,按照60T荷载对栈桥桥面分配梁I22a进行验算; 考虑本栈桥桥位实际地理条件,其施工工艺利用50T履带吊车采用“钓鱼法”施工,50T履带吊自重50T+吊重25T,考虑车辆自重及1.3的车辆冲击系数,栈桥设计中选择100吨履带吊车荷载进行贝雷梁及承重梁的验算; 3)设计行车速度10km/h。 2、按截面一设计的栈桥检算 2.1 上部结构恒重(6米宽计算) 1)8mm厚钢板,单位面积重62.8kg,则0.628kN/m2;
5、 2)面板分配梁工12.6,单位重14.21kg/m,则0.14kN/m,间距0.24m; 3)面层横向分配梁:I22,单位重33.05kg/m,则0.33kN/m ,1.98kN/根,间距0.75m; 4)纵向主梁:横向6排321型贝雷梁,6.66kN/m; 5)桩顶分配主梁:2I25a,单位重38.1kg/m ,则0.762kN/m。 2.2 车辆荷载 由于本项目桥面系8mm面板与I12.6焊接成框架结构,其结构稳定可靠,在此不再对面板进行计算,仅对面板主加强肋I12.6进行验算,其荷载分析如下: 1)自重均布荷载:0.305kN/m,电算模型自动附加在计算中,不另外进行添
6、加。 2)施工及人群荷载:不考虑与梁车同时作用。 3)I12.6断面内间距为24cm,横向分配梁间距为0.75m,其受力计算按照跨径为0.75m的连续梁进行验算。 汽车轮压:车轮接地尺寸为0.5m×0.2m,每组车轮压在2根I12.6上,则单根I12.6承受的荷载按照集中力计算为250 kN÷2÷2=62.5kN,转换成线性荷载为62.5 kN÷0.2=312.5 kN/m; 13方砼罐车横向及纵向布置图 100T单侧履带压:单侧履带着地尺寸为0.7m×4.69m,单侧履带荷载按线性荷载计算为1000kN/m÷2÷4.7=106.4kN/m。 3、按截面一设计的栈桥上部结构内力
7、计算 3.1 桥面系 (1)荷载计算 因桥面板为整体结构,其强度及稳定性较好,故此处不做单独验收。仅对桥面纵向分配梁I12.6进行计算。 单边车轮作用在跨中时,I12.6a弯矩最大,轮压力为简化计算可作为集中力。荷载分析: 1)自重均布荷载:0.305kN/m(面板+梁重) 2)施工及人群荷载:不考虑与汽车同时作用 3)汽车轮压:车轮接地尺寸为0.5m×0.2m, 最大轴重为250kN,每轴4组车轮,则单组车轮荷载为62.5kN,每组车轮压在2根I12.6上,则单根I12.6承受的荷载按照集中力计算,转换成线性荷载为62.5 kN÷0.2/2=156.25 kN/m; 则
8、单边车轮布置在跨中时弯距最大计算模型如下 1 受力模型 2 弯矩图(Mmax=5.11kN.m) 选用I12.6a,则 Wx=77cm3 ; σ=M/W=5.11kN.m /77cm3=66.4Mpa<[δ] =188.5 Mpa;满足强度要求。 (根据公路桥涵钢结构及木结构设计规范第1.2.10条有:对于临时结构有1.3 [σ]=145×1.3=188.5Mpa) 100T单侧履带压:单侧履带着地尺寸为0.7m×4.69m,单侧履带荷载按线性荷载计算为1000kN/m÷2÷4.7=106.4kN/m<156.25 kN/m 故此处履带轮压不作验算。 (2)刚度验算
9、该结构的容许挠度为不大于结构总长的1/400。 根据《建筑结构静力计算手册》 挠度:fmax=qcl3(8-4γ2+γ3)/384EI γ=c/l=0.2m/0.75m=0.27 fmax =31.25KN×0.753(8-4×0.272+0.273)/(384×2.1×105MPa×158cm4)=8×10-4m﹤0.75m/400=1.88×10-3m 3.2 I22横向分配梁内力计算 (1)荷载计算 单边车轮作用在跨中时,横向分配梁的弯矩最大,轮压力为简化计算可作为集中力。 荷载分析: 1)自重均布荷载:0.305kN/m×0.75/0.2m+0.33kN/m=1
10、.47kN/m 2)施工及人群荷载:不考虑与汽车同时作用 3)汽车轮压: 13m3砼罐车当后车轮布置在跨中时弯矩最大,计算模型如下: 6.2.3受力模型 (,Qmax=104.78kN) 选用I22a 则 A= 42.1cm2 , W=310cm3,I/S=18.9(I=3400 cm4,S=174.9),b=0.75cm σ=M/W=28.14/0.31=90.77MPa<188.2 MPa <[τ]=85×1.3=110Mpa (2)刚度计算 根据《建筑结构静力计算手册》 挠度:wmax=0.0004m﹤6m/400=0.015m 结构刚度与强度均满足要
11、求。 3.3 12m跨贝雷梁内力计算 3.3.1 12m跨贝雷梁内力计算 荷载分析: 1)自重均布荷载:q1 =0.305*10+1.98/0.75+6.66 =12.35KN/m; 2)施工及人群荷载: 不考虑与车辆同时作用; 3)本项目栈桥最大设计跨径为12m,单跨贝雷梁受力最不利的情况为50T履带吊车行驶到跨中位置作业,贝雷梁承受最大弯矩,50T履带吊车作业荷载100T×10/4.7m=212.77 kN/m。据此,利用SAP2000建立受力模型如下: 受力模型 (Mmax=1590.6kN.m,Qmax=569.6kN) 节点反力图(Nmax=729.18
12、N) 履带吊作用在墩顶,贝雷梁承受最大剪力,利用SAP2000建立受力模型如下: 受力模型 (Mmax=967.3kN.m,Qmax=900.13kN) 节点反力图(Nmax=1039.65N) 13方罐车后轮作用在跨中 (Mmax=940.45kN.m,Qmax=453.34kN,Nmax=572.81N) 13方罐车后轮作用在墩顶 (Mmax=378.81kN.m,Qmax=350.73kN,Nmax=692.39KN) 经过上述分析知,贝雷梁最大弯矩Mmax2=1590.6kN.m,最大剪力Qmax2=900.13kN,最大支座反
13、力Nmax=1039.65KN。纵向主梁选用6排单层贝雷架,则贝雷梁 容许弯矩[M]=788.2×6=4729.2kN.m, 容许剪力[Q]=245.2×6=1471.2kN。 Mmax=1590.6kN.m<[M]= 4729.2kN.m; Qmax=900.13kN<[Q] =1471.2kN,满足强度要求。 截面特性:[I]=5×105×4=20×105cm4。 挠度wmax=Fl3/48EI=1000KN×123/(48×2.1×105MPa20×105cm4)=8.5×10-5m﹤12m/400=0.03满足要求。 3.4 承重梁内力分析 承重梁一作为栈桥结构的主要
14、承重结构,是栈桥结构稳定安全的生命线,拟采用两排2I25a型材为承重梁。查《钢结构计算手册》得各相关力学参数如下: W=2×402cm3=804cm3, A=2×48.5=97cm2, I=2×5023cm4 I/S=21.58cm, d=0.8×2=1.6cm, 根据第3.3节对贝雷梁的计算分析,得到最大节点反力为1040kN,主纵梁为6排单层贝雷,考虑荷载不平衡分布系数1.2,则单排贝雷对承重梁一的作用力为F=1.2×1040kN/6/2=104kN。下面对桥台最不利情况下,承重梁一的内力情况进行建模分析,采用施工计算程序及示例(西南交通大学出版)中平面钢架程序(YY.FOR)
15、进行检算。 计算模型(标注单位为厘米) ⑴、输入数据: 8 9 3 6 1 210000000 1 2 3 4 5 6 7 8 2 3 4 5 6 7 8 9 9*.00010048 9*0.01526 0 0.4 0.9 2.2 2.65 3.1 4.4 4.9 5.3 9*0 2 1 1 0 5 0 1 0 8 0 1 0 1 3 4 6 7 9 6*0 6*104 6*0 ⑵、结构计算: STATIC ANALYSIS OF PLANE FRAME
16、 joints displacement(unit:mm,rad) join 1-x direction 2-y direction 3-m rotation(rad) 1 .00000 .13346 .00047 2 .00000 .00000 .00007 3 .00000 .10890 -.00030 4 .00000 .10523 .00
17、030 5 .00000 .00000 .00000 6 .00000 .10523 -.00030 7 .00000 .10890 .00030 8 .00000 .00000 -.00007 9 .00000 .13346 -.00047 member end-force(unit:kN,kN-m)
18、 member M1 M2 Q1 Q2 N 1 .000 -41.600 104.000 -104.000 .000 2 41.600 10.131 -103.461 103.461 .000 3 -10.131 9.430 .539 -.539 .000 4 -9.430 -37.612 104.539 -104.5
19、39 .000 5 37.612 9.430 -104.539 104.539 .000 6 -9.430 10.131 -.539 .539 .000 7 -10.131 -41.600 103.461 -103.461 .000 8 41.600 .000 -104.000 104.000 .000 support reactions(unit:kN,kN-
20、m) bear join X-direction Y-direction M- rotation 2 .0000 -207.4613 .00000 5 .0000 -209.0773 .00000 8 .0000 -207.4613 .00000 ⑶、计算结果分析: 最大挠度f'max=0.13mm,发生在1#和9#节点(如图计算简图所示), 最大弯矩M'ma
21、x=41.6KNm,发生在2#和8#节点(如图计算简图所示), 最大剪力Q'max=104.539KN,发生在5#节点(如图计算简图所示), 支点反力:R'1=R'2=207.461KN,R'3=209.077KN。 最大弯曲应力: σ=Mmax/W=41600/804 =52MPa<1.3×ψ2[σ]=0.9×188.2MPa=169MPa (根据路桥施工计算手册λe=α×l0×γx/h/γy=19,查表允许应力折减系数ψ2=0.9) 最大剪应力: τ=Qmax/(Ix/Sx)/t=104.539/21.58/1.6=30
22、MPa<[τ]=100MPa 最大挠度 f'max=0.13mm<[f]=L/400=1300/400=3.25mm 强度和刚度满足要求。 4、钢管桩承载力 根据上述计算分析知,钢管桩基础单桩承载力最大的情况出现在履带吊车在单排桩基础顶施工作业时,单桩最大承受荷载约351.96kN。考虑本项目的地质条件及设计提供的相关地质资料,施工中选用混凝土扩大基础。 根据上述计算结果,选择单排两根桩的墩基础对钢管桩进行检算: 临时支墩采用Q235钢管,外径600mm,壁厚8mm,每米重116.7Kg,截面积A=148.7cm2, 回转半
23、径i=21cm, 压杆的长细比λ=l0/I, l0取为2×8.0m,则λ=l0/i=76, 则压杆的承载力折减系数ψ取值为0.748,根据路桥施工计算手册临时结构允许应力[σ]可提高1.2倍,压杆稳定的允许应力=1.2×ψ[σ],单根钢管的允许承载力: [P]=1.2×ψA[σ]=0.748×116.7×10-4×1.2×140×106=1466KN 根据单根主横梁检算结果,单根立杆的最大压力为: Pmax=209.077KN+1.167KN/m×8m=218KN<[P]=1466KN 所以立柱的稳定性满足要求。 5、桥墩整体稳定性计算 为简化计算,取栈桥上部结构自重为16.5KN
24、/m,取活载(满载13方混凝土罐车)为600KN。 制动力:罐车制动力是栈桥上水平力的主要来源,其控制栈桥桩的强度和稳定性设计。根据栈桥设计参数,混凝土罐车满载设计时速10KN/m,按制动时间3s计算罐车制动力如下: 制动时减速度a=V/t=10×103/3600/3=0.93m/s2 制动力F=ma=600×0.93/9.8=57KN 由于单排桩墩设计不考虑承受水平力,每联中设计有两个制动墩来承受水平力,由于基桩入土深度较浅,因此制动墩的稳定性需要保证。设计的基桩嵌入岩层的深度要求大于0.5m。以传递水平力并且保证不滑动。桥墩存在的整体稳定的详细计算如下: 每联水平力由两个制动墩来
25、承受,每个制动墩承担的水平力F=57KN/2=28.5KN,在本联距制动墩相隔较远处制动,此时制动墩墩顶的竖向力仅为桥跨部分自重,如下图所示: 竖向力N1为半跨上部结构自重的一半加上后排上部结构自重、后排桩自重、桩顶横梁及桩间横向联结系自重: N1=16.5×9/2+16.5×3/2+3×9.3+6.7+3=136.6KN 竖向力N2为桩顶梁和桩间纵向联结系自重:N2=18+4.4=22.4KN 竖向力N3作用线通过倾覆计算线,所以可以不计算。 倾覆力矩:M倾=28.5KN×10m=285KNm 稳定力矩:M稳=N1×3+N2×1.5=136.6×3+22.4×1.5=443.4KNm 倾覆力矩<稳定力矩,安全。 6、计算结论 经分析计算,栈桥各主要受力构件强度和刚度均满足受力要求。
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 36个关键词详解2025政府工作报告
- 学习2025年政府工作报告中的八大科技关键词
- 2025年政府工作报告要点速览接续奋斗共谱新篇
- 学习2025政府工作报告里的加减乘除
- 深化农村改革党课ppt课件(20250305)
- 弘扬雷锋精神凝聚奋进力量学习雷锋精神的丰富内涵和时代价值
- 深化农村改革推进乡村全面振兴心得体会范文(三篇)
- 2025年民营企业座谈会深度解读PPT课件
- 领导干部2024年述职述廉述责述学述法个人报告范文(四篇)
- 读懂2025中央一号党课ppt课件
- 2025年道路运输企业主要负责人安全考试练习题[含答案]
- 2024四川省雅安市中考英语真题[含答案]
- 2024湖南省中考英语真题[含答案]
- 2024宁夏中考英语真题[含答案]
- 2024四川省内江市中考英语真题[含答案]