锅炉过热气温控制MATLAB及控制系统仿真



《锅炉过热气温控制MATLAB及控制系统仿真》由会员分享,可在线阅读,更多相关《锅炉过热气温控制MATLAB及控制系统仿真(25页珍藏版)》请在装配图网上搜索。
1、 装 订 线 课程设计报告 题目:MATLAB及控制系统仿真课程设计 学 院 电子信息工程学院 学科门类 电气信息类 专 业 自动化 学 号 2012449107 姓 名 陈文华 指导教师 姜萍 2016年 1 月
2、16 日 目 录 一 引言 2 1.1 实验目的 2 1.2 实验内容与要求 2 1.2.1实验内容 2 1.2.2实验要求 2 二 倒立摆控制系统设计 3 2.1倒立摆的简介 3 2.2倒立摆的数学模型 3 2.2.1本设计中所用到的各变量的取值及其意义 3 2.2.2动力学模型 3 2.3模型转化 5 三 基于状态反馈的倒立摆系统设计 6 3.1系统的开环仿真 6 3.1.1开环仿真的系统Simulink结构 6 3.1.2开环系统的分析 7 3.2输出反馈设计方法 7 3.2.1输出反馈仿真 7 3.2.2输出反馈系统的分析 8
3、 3.3状态反馈设计 8 3.3.1基于状态反馈控制器的倒立摆设计过程 8 3.3.2状态反馈仿真 9 3.3.3状态反馈分析 10 3.4全维状态观测器的倒立摆控制系统设计与仿真 10 3.4.1基于全维状态观测器的倒立摆系统设计步骤 10 3.4.2系统仿真 10 3.4.3基于状态观测器的状态反馈曲线分析 11 四 锅炉过热汽温控制系统设计及仿真 12 4.1蒸汽温度控制的任务 12 4.2影响蒸汽温度的因素 12 4.3蒸汽温度系统开环模型建立 12 4.3.1减温水量对蒸汽温度的影响 12 4.3.2动态特性 12 4.4蒸汽温度控制系统设计 1
4、2 4.4.1开环系统动态特性仿真及分析 12 4.4.2开环特性曲线分析 13 4.5单回路控制系统 13 4.5.1单回路控制系统仿真及分析 13 4.5.2系统PID参数的整定 13 4.5.3单回路控制系统仿真曲线分析 15 4.6串级控制系统 15 4.6.1串级控制系统仿真 15 4.6.2系统PID参数的整定 16 4.6.3串级系统响应曲线分析 18 五 总结 19 附 录 20 一 引言 1.1 实验目的 (1)加强学生对控制理论及控制系统的理解,熟练应用计算机仿真常用算
5、法和工具,完成控制系统计算机辅助设计的训练。 (2)提高学生对控制系统的综合及设计技能,扩大学生的知识面,培养学生独立分析问题及解决问题的能力,为以后从事实际控制系统的设计工作打下基础。 1.2 实验内容与要求 1.2.1实验内容 (1)基于观测器的倒立摆控制系统设计及仿真 (2)锅炉过热汽温控制系统设计及仿真 1.2.2实验要求 (1)系统分析及数学模型建立 (2)开环系统仿真及动态特性分析 (3)控制方案设计及闭环系统仿真实验 (4)实验结果分析 二 倒立摆控制系统 2.1倒立摆的简介 倒立摆系统是一个复杂
6、的、高度非线性的、不稳定的高阶系统,是学习和研究现代控制理论最合适的实验装置。倒立摆的控制是控制理论应用的一个典型范例,一个稳定的倒立摆系统对于证实状态空间理论的实用性是非常有用的。 由于倒立摆本身是自不稳定的系统,实验建模存在一定的困难。但是经过假设忽略掉一些次要的因素后,倒立摆系统就是一个典型的运动的刚体系统,可以在惯性坐标系内应用经典力学理论建立系统的动力学方程关系。 在此,我们首先应用动力学方程建立一级倒立摆的非线性数学模型;采用小偏差线性化的方法在平衡点附近局部线性化得到线性化的数学模型;然后应用状态空间分析方法,采用状态反馈为倒立摆系统建立稳定的控制律;最后应用状态观测器实现倒
7、立摆系统的稳定控制。 2.2倒立摆的数学模型 倒立摆示意图如图2-1所示,通过对小车施加一定的驱动力,使倒立摆保持一定的位姿。 图2-1倒立摆示意图 2.2.1本设计中所用到的各变量的取值及其意义 小车质量M;m:小球的质量;l:倒摆的杆长;g:重力加速度;θ:表示倒摆偏离垂直方向的角度;u是小车受到的水平方向的驱动力; 2.2.2动力学模型 小球受力分析如图2-2所示,其中表示小球的重心坐标 Y Fy Fx G x l 水平方向受到的合外力 竖直方向受到的合力 图2-2小球受力分析示意图 通过受力分析,由牛顿第二运动定律,系统的运动满足下
8、面的方程: x轴方向: 小球的重心坐标满足: 整理后得: 小球的力矩平衡方程: 整理可得: 最后得到倒立摆系统的动力学方程: 显然该系统为明显的非线性系统。但是对小车施加驱动力的目的是要保持小球在垂直方向的姿态,因此,我们关注的是小球在垂直方向附近的动态行为变化,为此将系统在该参考位(θ=0)附近进行线性化处理
9、。 2.3模型转化 微分方程→状态方程 由倒摆系统的动力学模型 取如下状态变量: 可得到倒摆系统的状态方程: 2.4状态方程的线性化: 采用Jacobian 矩阵线性化模型,最终得到系统的线性化状态方程为: 假定系统的输出为倒摆的角度和小车的x轴坐标,则系统的输出方程为: 三 基于状态反馈的倒立摆系统设计 3.1系统的开环仿真 3.1.1开环仿真的系统Simulink结构 开环仿真的系统Simulink结构图如图3-1所示 图3-1开环仿真Simulink结构图 运行后观察小车位置响应曲线如图3-2所示,小球角度响应曲
10、线如图3-3所示。 图3-2cart pos响应曲线 图3-3rod abgle响应曲线 3.1.2开环系统的分析 由图3-2和图3-3所示,小球的角度会随着小车的位移的增大而增大,并不能自动调整在平衡点附近来回摆动。可见开环系统并不能维持系统的稳定性。 3.2输出反馈设计方法 3.2.1输出反馈仿真 输出反馈结构Simulink结构图如图3-4所示 图3-4输出反馈Simulink结构图 运行后系统波形倒摆的角度的响应曲线如图3-5,小车的位置的响应曲线图3-6所示。 图3-5倒摆的角度响应曲线 图3-6小车的位置响应曲线 3.
11、2.2输出反馈系统的分析 通过反复的调整和研究增益k1、k2对于系统误差的敏感性,最终能够稳定系统。然而系统的动态性能远不能让人满意,对于k1=-50,k2=-2,系统只是临界稳定,它仍在新的参考点附近反复震荡。 3.3状态反馈设计 3.3.1基于状态反馈控制器的倒立摆设计过程 (1) 系统能控性判别,应用可控性判别矩阵CM=ctrb(A,B),再判断该矩阵的秩rank(CM)=4,由开环系统分析部分已经得知系统状态完全能控。 (2) 闭环系统的极点配置。根据系统的动态性能,确定闭环系统的期望几点clp,clp=[-1.5+3.0j -1.5-3.0j -5 -4]。 (3) 确
12、定反馈增益。应用MATLAB的place函数Ks=place(A,B,clp),确定反馈增益Ks,Ks=[-432.6154 -176.2944 -89.5077 -64.1472]。 (4) 系统设计。由状态反馈方框图可得系统的状态空间表达式为 此时,系统矩阵为,(其中为反馈增益矩阵),控制矩阵为(其中),因为对小车的控制要求静态终值,所以。此时的系统设计 3.3.2状态反馈仿真 状态反馈结构Simulink结构图如图3-7所示 图3-7状态反馈Simulink结构图 小车位置和状态变量的响应曲线如图3-8所示 图3-8小车位置和状态变量的响应曲线
13、 3.3.3状态反馈分析 从响应曲线可以看出,小车开始沿x轴正向移动,大约3s后静止在x=1m处。并且此时所有的状态变量都趋于0,x(t)趋于平衡点。 3.4全维状态观测器的倒立摆控制系统设计与仿真 3.4.1基于全维状态观测器的倒立摆系统设计步骤 (1) 系统能观性判别。应用客观性判别矩阵N=obsv(A,C),判别该矩阵的秩rank(N)=4,所以系统状态完全能观。 (2) 状态观测器闭环极点配置。适当选择观测器的极点,使观测器的动态速度是系统的两倍以上,所观测的极点op=2*clp。 (3) 指定极点的观测器增益L。同样应用place函数:G=place(A’,B’,op)
14、,G=G’,G=1.0e+00.*[-2.882 -9.8401 0.024 0.2382]。 (4) 系统设计。 其中 3.4.2系统仿真 基于状态观测器的状态反馈Simulink结构图如图3-9所示 图3-9基于状态观测器的状态反馈Simulink结构图 仿真结果状态曲线图如图3-10,图3-11显示了系统状态与观测器得到的估计状态之间的误差曲线 3-10小车位置和倒摆角度响应曲线 3-11状态变量的误差曲线 3.4.3基于状态观测器的状态反馈曲线分析 从响应曲线可以看出,小车开始沿x轴正向移动,并且此时所有的状态变量都趋于0,x(t)趋
15、于平衡点。 四 锅炉过热汽温控制系统设计及仿真 4.1蒸汽温度控制的任务 锅炉出口过热蒸汽温度是蒸汽的重要质量指标,是整个锅炉汽水通道中温度最高的,直接关系到设备的安全和系统的生产效率。过高,使金属强度降低,影响设备安全;过低,使全厂热效率显著下降,每下降 5 oC 使热效率下降 1%。锅炉过热蒸汽温度控制的基本任务就是维持过热器出口温度在允许范围内,保护设备安全,并使生产过程经济、高效的持续运行。 4.2影响蒸汽温度的因素 (1) 减温水量 QW (控制量)(2)蒸汽流量 D(3)烟气热量 QH 4.3蒸汽温度系统开环模型建立 4.3.1减温水量
16、对蒸汽温度的影响 过热器具有多分布参数的对象,可以把管内蒸汽和金属管壁看作多个单容对象串联组成的多容对象。当减温水流量发生变化后,需要通过这些串联单容对象,最终引起出口蒸汽温度变化。减温器距离出口越远延迟就越大。 4.3.2动态特性 本实验采用的动态特性的高阶模型为负荷为100%,动态特性为 (1)导前区: (2)惰性区 4.4蒸汽温度控制系统设计 4.4.1开环系统动态特性仿真及分析 开环系统动态特性如图4-1所示 图4-1开环系统动态特性Simulink结构图 运行后开环动态特性曲线如图4-2所示 图4-2开环动态特性曲线 4.4.2开环特性曲线分析 由
17、图4-2可知,系统在250秒左右稳定在3.8。 4.5单回路控制系统 4.5.1单回路控制系统仿真及分析 单回路控制系统仿真如图4-3所示 图4-3单回路控制系统Simulink结构图 4.5.2系统PID参数的整定 (1)取Ti=∞,Td=0。 P较大(Kp较小)工况稳定时投入自动; (2)逐渐减小P(或增大Kp)每改变一次都给系统施加一次定值阶跃,观察输出曲线,直至出现等幅振荡(四,五次即可),如图4-4所示,记录此时的Kp=0.61,Pm=1/Kp=1.64,测出振荡周期Tm=150; 图4-4等幅震荡曲线 (3)PID参数整定 经验公式计算 P
18、Ti PI 2.2Pm=0.572 0.85Tm=10.2 根据整定的参数,进行PID参数设置如图4-5所示 图4-5参数设置 得到仿真特性曲线如图4-6所示 图4-6PI调节特性曲线 (4) 可见振荡较厉害,响应曲线品质不够理想,在此基础上继续调整,增大积分时间、减小比例系数(均为增强稳定性)并尝试加上微分作用。参数整定如图4-7所示 图4-7参数设置 输出仿真结果,如图4-8所示 图4-8单回路控制系统仿真特性曲线 4.5.3单回路控制系统仿真曲线分析 由图4-8可见,控制效果大大改善,有效抑制了超调并增强稳定性,快速达到平衡。
19、4.6串级控制系统 4.6.1串级控制系统仿真 串级控制系统仿真Simulink结构图如图4-9所示 图4-9串级控制系统仿真Simulink结构图 4.6.2系统PID参数的整定 (1)取Ti=∞,Td=0。 P较大(Kp较小)工况稳定时投入自动; (2)逐渐减小P(或增大Kp)每改变一次都给系统施加一次定值阶跃,观察输出曲线,直至出现等幅振荡(四,五次即可),如图4-10所示,记录此时的Kp=2.4,Pm=1/Kp=0.42,测出振荡周期Tm=100; 图4-10等幅震荡曲线 (3)PID参数整定 经验公式计算 P Ti PI 2.2Pm 0
20、.85Tm 根据整定的参数,进行PID参数设置如图4-11所示 图4-11参数设置 得到仿真特性曲线如图4-12所示 图4-12PI调节特性曲线 可见振荡较厉害,响应曲线品质不够理想,在此基础上继续调整,增大积分时间、减小比例系数(均为增强稳定性)调整后的PID参数如图4-13所示 图4-13调整后的PID参数 串级控制系统仿真特性曲线如图4-14所示 图4-14串级控制系统仿真特性曲线 4.6.3串级系统的响应曲线分析 主控制器的输出即副控制器的给定,而副控制器的输出直接送往控制阀。主控制器的给定值是由工艺规定的,是一个定制,因此,主环是一个定
21、值控制系统;而副控制器的给定值是由主控制器的输出提供的,它随主控制器输出变化而变化,因此,副环是一个随动控制系统。 串级控制系统中,两个控制器串联工作,以主控制器为主导,保证主变量稳定为目的,两个控制器协调一致,互相配合。若干扰来自副环,副控制器首先进行“粗调”,主控制器再进一步进行“细调”。因此控制质量优于简单控制系统。 串级控制有以下优点 ① 由于副回路的存在,减小了对象的时间常数,缩短了控制通道,使控制作用更加及时; ② 对二次干扰具有很强的克服能力,对客服一次干扰的能力也有一定的提高; 对负荷或操作条件的变化有一定的自适应能力。 五 总结
22、 附 录 倒立摆的.m文件的程序: close all,clear all M=2.0;%小车的质量 m=0.1;%小球的质量 l=0.5;%摆杆的长度 g=9.81;%重力加速度 %线性化模型的状态空间矩阵 A=[0 1 0 0;(M+m)*g/(M*l) 0 0 0;0 0 0 1;-m*g/M 0 0 0] B=[0;-1/M/l;0;1/M] C=[1 0 0 0;0 0 1 0] D=[0;0] ev=eig(A) CM=ctrb(A,
23、B)%输出秩=4,满秩,完全能控 rank(CM) clp=[-1.5+3.0j -1.5-3.0j -5.0 -4.0]; Ks=place(A,B,clp) eig(A-B*Ks)%验证闭环特征值 Nr=-1/(C*inv(A-B*Ks)*B)%计算稳态误差 set(0,showHiddenHandles,on); set(gcf,menubar,figure); set(0,showHiddenHandles,on); set(gcf,menubar,figure); op=2*clp%观测器的速度是闭环系统的2倍 G=place(A,C,op) G=G set(0,showHiddenHandles,on); set(gcf,menubar,figure);
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。