机械专业中英文外文翻译--人工生命的机器人

上传人:红** 文档编号:180311160 上传时间:2023-01-05 格式:DOC 页数:11 大小:350KB
收藏 版权申诉 举报 下载
机械专业中英文外文翻译--人工生命的机器人_第1页
第1页 / 共11页
机械专业中英文外文翻译--人工生命的机器人_第2页
第2页 / 共11页
机械专业中英文外文翻译--人工生命的机器人_第3页
第3页 / 共11页
资源描述:

《机械专业中英文外文翻译--人工生命的机器人》由会员分享,可在线阅读,更多相关《机械专业中英文外文翻译--人工生命的机器人(11页珍藏版)》请在装配图网上搜索。

1、外文文献及译文 本科毕业设计 外文文献及译文 院 (部): 专 业: 班 级: 姓 名: 学 号: 外文文献: ORIGINAL ARTICLE Artif Life Robotics (2011) 16:86–89 © ISAROB 2011 DOI 10.1007/s10015-011-0892-1 S. Ueki · H. Kawasaki · Y. Ishigure ·

2、 K. Koganemaru Y. Mori Development and experimental study of a novel pruning robot only one commercial product is available in Japan.6 The machine climbs a tree spirally and cuts branches using a chainsaw. However, the machine’s weight (25 kg) and slow speed hinder it from being an optimal solutio

3、n to resolve the forest crisis. A lightweight platform is required, because most of the mountains in Japan have steep slopes, and the transportation of a pruning robot is a demanding task. To advance the state of the art of pruning robots, we present an innovative pruning robot that has its center o

4、f mass outside the tree. The wheel mechanism is designed for a hybrid climbing method, i.e., the robot is able to switch between straight and spiral climbs. This method ensures both lightweight and high climbing speed features in the Robot. In an earlier publication,7 we introduced the basic design

5、concept and described some experiments with the prototype robots in detail. Moreover, the hybrid climbing method has proven that the proposed pruning robot can climb up and down a tree at high speed.8 Here, we report our progress in developing the robot, focusing on straight climbing, its behavior o

6、n uneven surfaces, and pruning. 2 Developed pruning robot With the ultimate goal of building a lightweight pruning robot, we have developed a novel climbing method that uses no pressing or grasping mechanism, but relies on the weight of the robot itself, like a traditional Japanese timberjack does w

7、hen climbing a tree (Fig. 1). The timberjack uses a set of rods and ropes, which is called “Burinawa,” and does not hold or grasp the tree strongly, while his center of mass is located outside the tree. That is, the timberjack can stay on the tree using his own weight. Based on this new design conce

8、pt and the requirements of the forestry industry, the pruning robot has been developed. As shown in Fig. 2, the robot is equipped with four active wheels. Wheels 1 and 2 are located on the upper side, and wheels 3 and 4 are located on the lower side. Each wheel is driven by a DC servomotor and a war

9、m wheel Abstract This article presents the development of a timberjack- like pruning robot. The climbing principal is an imitation of the climbing approach of timberjacks in Japan. The robot’s main features include having its center of mass outside the tree, and an innovative climbing strategy fusi

10、ng straight and spiral climbs. This novel design brings both lightweight and high climbing speed features to the pruning robot. We report our progress in developing the robot, focusing on straight climbing, 1 behavior on uneven surfaces, and pruning. Key words Pruning robot · Climbing robot 1

11、 Introduction The timber industry in Japan has gone into decline because the price of timber is falling and forestry workers are aging rapidly. This has caused the dilapidation of forests, resulting in landslides following heavy rainfall and the dissolution of mountain village society. However, a pr

12、uned tree in a suitably trimmed state is worth money because its lumber has a beautiful surface with well-formed annual growth rings. The development of a pruning robot is important for the creation of sustainable forest management. The research and development of a pruning robot 1–5 has been rare,

13、and Received and accepted: February 25, 2011 S. Ueki (*) Department of Mechanical Engineering, Toyota National Colleges of Technology, 2-1 Eiseicho, Toyota, Aichi 471-8525, Japan e-mail: s_ueki@toyota-ct.ac.jp H. Kawasaki · K. Koganemaru Department of Human and Information Systems Engineering,

14、 Gifu University, Gifu, Japan Y. Ishigure Marutomi Seikou Co. Ltd., Seki, Japan Y. Mori Hashima Karyuu Kougyou Ltd., Gifu, Japan This work was presented in part at the 16th International Symposium on Artifi cial Life and Robotics, Oita, Japan, January 27–29, 2011 87 the batteries.

15、 The center of mass was located with a margin of error, because the friction coeffi cient is unclear and the position of the center of mass may be moved by disturbance. For example, the robot will be tilted when it climbs up an uneven surface. In Fig. 2a, the center of mass was located with paramete

16、rs H = 0.3 m and W = 0.22 m, where H is the distance between the upper side wheel and the lower side wheel, and W is the distance between the surface of the trunk and the center of mass, as shown in Fig. 3. The analysis shows that the robot is robust when D is 0.25 m, even if it is tilted about 0.1

17、rad. The controller is constructed using a CPU board which is equipped with a wireless LAN. The controller is able to communicate data/commands with a personal computer via the wireless LAN. Each wheel is controlled by a velocity PI control. A velocity feedback input through a high-pass filter is ap

18、pended. By comparison with the 2nd prototype,8 the 3rd prototype is lightweight except for the controller and batteries. Also, the controller and the electrical source were located externally in the 2nd prototype. The 3rd prototype is also equipped with a wireless LAN and a chainsaw. Although detail

19、s of the chainsaw are omitted here, an experiment was performed to show the cutting of a branch using the 3rd prototype. 3 Experiments Three experiments were performed to evaluate the 3rd prototype. The 1st experiment was to evaluate its basic performance. The 2nd experiment was to evaluate its r

20、obustness on uneven surfaces. The 3rd experiment was to show whether the robot can prune a branch. All experiments were performed using a substitute tree indoors. The diameter of the substitute tree was 0.25 m. The frictional coeffi - cient of the substitute tree was about 0.4, which is less than th

21、at of a natural tree. To collect the experimental data, the motor current, the position of the robot, and the orientation of the robot were measured. The motor current was measured using shunt resistance. The position was measured by a 3-D position measurement device (OPTOTRAK, Northern Digital). Th

22、e orientation was measured by a 3-D orientation sensor (InertiaCube2, InterSense). Fig. 1. Tree climbing method using “BURINAWA” Fig. 2. 3rd prototype of pruning robot. a Photo image. b CAD image reduction mechanism which has non-back-drivability. The steering angle of each wheel is also driven by

23、 the DC servomotor and the warm wheel reduction mechanism. Based on analysis,7–9 the center of mass was located outside the tree with the help of the weight of the controller and Fig. 3. 3D fi gure of a pruning robot on a tree. a Side view. b Top view 88 3.1 Basic performance A straight climbing

24、 experiment was performed to evaluate the robot’s basic performance. The desired speed of the four wheels was given by the trapezoidal profi le. The acceleration was 0.2 m/s2, and the speed was 0.2 m/s per 0.075 m of wheel radius. The experimental results are shown in Figs. 4, 5, and 6. Figure 4 sho

25、ws the speed of the robot. The speed of each wheel was calculated from the values of the rotary encoder. The robot was able to climb at 0.2 m/s. Although there was a starting delay of about 0.5 s owing to the control law, this was not a problem. Figure 5 shows the distance moved. The “3D” value was

26、measured by a 3D position measurement device, and the distance moved by each wheel was calculated from the value on the rotary encoder. In Fig. 5, we found three types of error: errors in the distance moved between each wheel and the 3D position measurement device (E1); error between wheel 1 (or 3)

27、and wheel 2 (or 4) (E2); error between wheel 1 and wheel 3 (and error between wheel 2 and wheel 4) (E3). We considered two possible reasons for these errors. The fi rst was differences in the deformation of each wheel. The distance moved by each wheel was calculated as 0.075 m of the radius of the w

28、heel. The wheel was composed of urethane and an inner tube which was deformed by the force acting on it. The deformation volume depended on the magnitude of the force. From a theoretical analysis,7–9 the magnitude of the force in the third prototype tended to be as follows. The normal force near the

29、 center of mass becomes larger than the force at the opposite side. Hence, Fn4 = Fn2 > Fn3 = Fn1 was considered, where Fni is magnitude of the normal force of wheel i. Both (E1) and (E2) can be explained in this way. We also considered that the reason for (E3) was slippage of the wheel on the trunk.

30、 Figure 6 shows the electric current in the wheel motors, which were measured by the shunt resistance. The theoretical analysis7–9 also showed that the tangential force on the lower side is larger than that on the upper side. Figure 6 tends toward the theoretical analysis. 3.2 Behavior on uneven su

31、rfaces To use the robot safely, it must be robust on an uneven tree trunk. There will always be bumps caused by the growth of the remnants of a pruned branch. Therefore, a straight climbing experiment was performed to evaluate the robustness of the pruning robot for bumps on trunk. This experiment

32、was performed on a substitute bump. The bump was made of ABS plastics, and was larger than a natural bump.The desired speed of the four wheels was given by a trapezoidal profile. The acceleration was 0.2 m/s2 and the speed was 0.2 m/s for every 0.075 m of the radius of the wheel. The experimental re

33、sults are shown in Fig. 7, which shows the trajectories of angles 1 and 2 (see also Fig. 2b). Angle 2 rotated toward the plus direction in all cases, indicating that the control box was rising. This means that the center of mass moved toward the tree. The center of mass also moved toward the tree wh

34、en angle 1 rotated toward the plus direction. This means that there is a decrease in the friction force keeping the robot on the tree. However, the electric currents in wheels 2 and 4 were larger than the continuous current in the experiment. Therefore, there was no danger of the robot falling down.

35、 Moreover, these angles returned to their former orientation, even though both angles 1 and 2 had changed when a wheel went over the bump. These results show the good robustness of the robot. 3.3 Pruning experiment An experiment was carried out to discover whether the 3rd prototype could prune a br

36、anch. An attached chainsaw was driven by a DC motor with a 24-V battery. The robot climbed the tree spirally at a speed of 0.03 m/s. The diameter of the target branch was 0.01 m. Fig. 4. Climbing speed Fig. 5. Climbing distance Fig. 6. Electric current of each wheel Fig. 7. Roll angle and pitch

37、angle in each case. a Wheel 1 goes over the bump, b Wheel 2 goes over the bump, c Wheel 3 goes over the bump,d Wheel 4 goes over the bump Fig. 8. Pruning experiment with the pruning robot The experimental scene is shown in Fig. 8. In this experiment, the branch was cut off leaving only a short rem

38、nant which was less than 0.005 m, and the trunk was not injured. 4 Conclusion The developmental progress of a timberjack-like pruning robot has been described, focusing on straight climbing, its behavior on an uneven surface, and pruning a branch. The straight climbing experiment showed that the 3

39、rd prototype gave a good basic performance. The result of the climbing experiment on an uneven surface showed good robustness for bumps, because most bumps on real trees are smaller than the experimental bump. Moreover, the pruning experiment also showed that the 3rd prototype can prune a branch fr

40、om a tree.In future work, we hope to test the robot in a real environment, and try to make some further improvements. References 1. Takeuchi M, et al (2009) Development of street tree climbing robot WOODY-2 (in Japanese). Proceedings of Robomec 2009, 1A2–D07 2. Kushihashi Y, et al (2006) Develo

41、pment of structure of measuring grasping power to control simplifi cation of tree, climbing and pruning robot Woody-1 (in Japanese). Proceedings of the 2006 JSME Conference on Robotics and Mechatronics 3. Suga Y, et al (2006) Development of tree-climbing and pruning robot WOODY. Actuator arrang

42、ement on the end of arms for revolving motion (in Japanese). Proceedings of SI2006, pp 1267–1268 4. Yokoyama T, Kumagai K, Arai Y, et al (2006) Performance evaluation of branches map building system for pruning robot (in Japanese). Proceedings of the 2006 JSME Conference on Robotics and Mechat

43、ronics 5. Yamada T, Maeda K, Sakaida Y, et al (2005) Study on a pruning system using robots: development of prototype units for robots (in Japanese). Proceedings of the 2005 JSME Conference on Robotics and Mechatronics 6. Seirei Industry. html. Accessed May 2011 7. Kawasaki H, Murakami S, Ka

44、chi H, et al (2008) Analysis and experiment of novel climbing method. Proceedings of the SICE Annual Conference 2008, pp 160–163 8. Kawasaki H, Murakami S, Koganemaru K, et al (2010) Development of a pruning robot with the use of its own weight. Proceedings of Clawar 2010, pp 455–463 9. Kato T

45、, Koganemaru K, Tanaka A, et al (2010) Development of a pruning robot with the use of its own weight (in Japanese). Proceedings of RSJ2010, Nagoya 中文译文: 人工生命的机器人(2011)16:86–89©isarob 2011 10.1007/s10015-011-0892-1 S. Ueki · H. Kawasaki · Y. Ishigure · K. Koganemaru Y. Mori一个新的修剪机器人的实验研究进展在日

46、本只有一个商业产品。这台机螺旋地爬上一棵树使用电锯修剪树枝。然而,机器的重量(25公斤)和缓慢的速度阻碍它成为解决森林危机的最佳解决方案。一个轻量级的平台是必需的,因为在日本,大部分山脉有陡峭的山坡,一个修剪机器人运输是一项艰巨的任务。以提前修剪机器人的艺术状态,我们提出一个创新的修剪机器人对于外面大多数的树都能高效工作。它的轮系机构的设计是为了适应于混合爬山,即,机器人能够开关之间的直线和螺旋爬升。该方法保证了机器人的轻量化和高爬的速度特征在早期的出版物,我们介绍了基本的设计概念和描述的原型实验机器人了。此外,混合爬山法已经证明,该修剪机器人可以高速的爬上爬下大树。在这里,我们报告我们开发机

47、器人的进展,专注于直爬,善于不平坦的表面上的工作,和修剪。2先进的修剪机器人随着建设轻修剪的终极目标机器人,我们已经开发了一种新型的爬山法,采用无压或抓机制,而是依靠机器人本身的重量,像日本传统的伐木工不会爬树的时候(图1)。该用的一套杆和绳子,这是所谓的“burinawa,“不握不住或抓住树干,而他的质量中心位于树。是的,该可以用自己的重量停留在树上。基于这一新的林业产业的设计概念和要求,修剪机器人有了很大的发展。如图2所示,该机器人配备了四主动轮。轮1和2位于上侧,轮3和4位于下侧。每个轮由直流伺服电机、蜗轮驱动。 摘要 本文介绍了一个伐木工的发展—像修剪机器人。攀登主要是模仿在日本的

48、timberjacks攀登方法。机器人的主要功能包括对外面的树进行修剪工作,和一个创新的爬山策略融合直线和螺旋式攀升的方式。这种新颖的设计带来了轻量化和高爬升速度特征的修剪机器人。我们报告我们在发展机器人进展,针对直爬,不平坦的表面上的工作、修剪。 关键词· 修剪机器人 爬壁机器人 1引言 日本木材工业已经进入下降的原因,木材价格下降和林业工人老龄化迅速。这导致了森林的破坏,导致在暴雨和山体滑坡的破坏山村地区。然而,在一个适当的配平状态修剪树是值得在上面投资的,因为其形成一个美丽的表面形成年轮。 一个修剪机器人的发展对可持续森林管理的创新是很重要的。研究开发的修剪机器人1–5已经很少见

49、了。2011年2月25日 S.植木 机械工程系,丰田民族院校丰田471-8525,爱知县,日本 电子邮件:s_ueki@toyota-ct.ac.jp 川崎·koganemaru H. K. 人与信息系统工程系,岐阜大学,岐阜县,日本 Y.石博 marutomi有限公司,,日本 Y.森 雪蛤karyuu兴业有限公司,岐阜县,日本 这部分工作是在第十六届国际研讨会在人工生命与机器人项目展现的,,日本,一月27日–29日,2011年。 87 电池,质量中心位于一个错误的边缘,由于摩擦系数不明确、质量中心的位置可能被干扰。 例如,机器人会倾斜,当它爬上一个不均匀的表面。在图

50、2a,质心定位参数H = 0.3 M和W = 0.22米,其中H为上轮和下侧面之间的距离轮,和W的表面之间的距离躯干和质量中心,如图3所示。分析表明机器人当D为0.25米,即使它倾斜约0.1拉德。控制器使用一个CPU板构成,配备了无线局域网。该控制器能够通信数据/命令与个人电脑通过无线局域网。每一轮由速度PI控制。通过一个高通滤波器的速度反馈输入附加。通过与第二个原型比较,第三原型重量轻,除控制器和电池。同时,控制器和电源分布在外部的第二个原型。第三原型也配备一个无线局域网和电锯。虽然的电锯细节在这里省略了,实验表明一个分支使用第三切削原型。 3实验 三实验进行评估的第三个原型。第一个实验

51、是对其基本性能。第二个实验是评价其在不平坦的表面的性能。第三实验表明机器人是否可以修剪树枝。所有的实验使用替代树在室内进行。替代树直径的是0.25米的摩擦系数—有效的替代树大约是0.4,这是小于这一自然的树。收集实验数据包括,该电机电流,机器人的位置和方向,机器人的测定,测量电机电流。 使用分流电阻。测定位置的一个三维位置测量装置(OPTOTRAK,北 数字)。用三维定位测量定位传感器(inertiacube2,InterSense)。 图1。爬树方法使用“burinawa” 图2。第三修剪机器人原型。照片图像。B CAD图像 还原机制具有非回驾驶性能。每个车轮的转向角度也由直流

52、驱动,伺服电机和蜗轮减速机构。 在分析的基础上,7–9质量中心位于外树与控制器的重量。 图3。对一棵树的修剪机器人三维图。侧视图。俯视图 3.1基本性能 直爬实验进行评估,机器人的基本性能。这四个预期的速度轮子是由梯形的简介。加速度 0.2米/ S2,和速度为0.2米/秒 ,车轮半径0.075米,。 实验结果显示在图。4,5,和6。图4显示了机器人的速度。各自的速度从旋转编码器的值计算出轮。机器人能爬在0.2米/秒。虽然有一个约0.5由于控制法启动延迟,这是一个问题。图5显示移动的距离。它的实现是由一个三维位置测量设备,和移动的距离每轮计算 从价值上的旋转编码器。在图5中,我们发

53、现三种类型的错误:在距离误差的感动每一轮的三维位置测量之间装置(E1)之间的误差;轮1(或3)和2(或轮4)(E2);轮1和轮3之间的误差(误差之间的2和4轮轮)(E3)。我们考虑了两这些错误的可能原因。第一个是差异在每一轮的变形。移动的距离按0.075米的半径为每个车轮的每一圈。车轮是由聚氨酯合成的管,它是作用在它变形的力。它的变形量的大小取决于力。从理论上分析,7–9级在第三原型的力量往往是如下。的正常力近质心变得大于在对面的力。因此,填充扶手椅形= FN2 > FN3 = FN1被认为是,在法国是正常的力的大小第一轮(E1)和(E2)可以这样解释。我们认为原因是滑移(E3)树干上的车轮。

54、图6显示了电流在轮毂电机,这是由并联测量电阻。理论分析也表明,在下侧切向力大于上面。图6倾向于理论分析,不平坦的表面上安全使用的机器人正常工作,它必须在不平的树是强大的树干。总是会有由增长引起的颠簸一个修剪枝的遗迹。因此,直爬坡实验进行评估颠簸在树干修剪机器人的性能。这个实验在一个替代的凹凸进行。采用ABS塑料,和大于天然凹凸。在四轮所需的速度是由一个梯形了简介。加速度为0.2米/ S2和速度为0.2米/秒,每0.075米半径的车轮。 实验结果如图7所示,其中显示角度1的轨迹和2(参见图2B)。2角旋转对所有病例加方向,指示这个控制箱上升。这意味着,大众走向树中心。质量中心也走向了树当1角方

55、向旋转正方向。这意味着减少摩擦力使机器人在树上。然而,在2个轮子的电流和4均大于在实验中连续电流。因此,有没有危险的机器人跌倒。此外,这些角度回到原来的方向,即使角度1和2发生了当一轮了凹凸。这些结果显示了良好的性能。 3.3修剪试验 进行实验,发现无论是第三原型可以修剪树枝。一个附加的电锯是由一个24V蓄电池直流电机驱动。机器人爬上螺旋的速度在0.03米/秒的直径的树该目标分为0.01米。 图7。在每一种情况下滚角和俯仰角。一轮1过去的凹凸,B轮2通过凹凸,C轮3通过凹凸,D轮4通过凹凸图8。机器人与修剪修剪试验,实验的场景如图8所示。在这个实验中, 树枝被切断,只留下一个短暂的

56、残这是小于0.005米,与树干没有受伤。 4结论 一个伐木工像修剪的发育进程,机器人已经被描述,针对直爬,其在不平坦的表面行为,修剪树枝。的实验表明,直爬第三原型给了一个很好的基本性能。攀爬的结果在不平坦的路面上试验中表现出良好的鲁棒性颠簸,因为真正的树最凸起的小比实验碰撞。此外,修剪试验 还表明第三的原型可以修剪树枝从一棵树。在今后的工作中,我们希望在实际环境中的机器人测试,试着做一些进一步的改进。 工具书类 1。张军军,等人2009年开发行道树爬壁机器人木本。2009促进了程序,1A2–D07的发展。 2。kushihashi Y,等人2006年发展了结构测量抓树力修剪树,攀爬

57、修剪机器人木本(日本)。2006年开展程序与机器人与机电一体化会议。 3。Suga Y,等人2006年开发攀树和修剪机器人木本。执行器布置在臂端为了旋转运动(日本)。促进了si2006,PP1267–1268 4。Yokoyama T, Kumagai K, Arai Y,等人(2006)评估了树枝修剪机器人地图构建系统的绩效(日本)。在2006年开展了程序和机器人机电一体化会议。 5。Yamada T, Maeda K, Sakaida Y,et al(2005)研究用于机器人的修剪系统:发展了机器人样机单元(日本)。开展了机器人2005日本机械学会与机电一体化会议。 6。圣隶工业。

58、 7。Kawasaki H, Murakami S, Kachi H,等人(2008)分析与实验新型爬山法。开展了2008,PP 160–163的SICE会议。 8。Kawasaki H, Murakami S, Koganemaru K,等人(2010)开发一个用其自身的重量的修剪机器人。促进455–CLAWAR 2010,PP 463行业的发展 9。Kato T, Koganemaru K, Tanaka A,等人(2010)开发的一个利用自身的重量的修剪机器人(日本)。促进着rsj2010,名古屋的发展。 9

展开阅读全文
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

相关资源

更多
正为您匹配相似的精品文档
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!