椭圆双曲线抛物线必背的经典结论
《椭圆双曲线抛物线必背的经典结论》由会员分享,可在线阅读,更多相关《椭圆双曲线抛物线必背的经典结论(9页珍藏版)》请在装配图网上搜索。
1、新梦想教育辅导讲义 学员编号(卡号): 年 级: 第 课时 学员姓名: 辅导科目: 教师: 课 题 授课时间: 月 日 备课时间: 月 日 教学目标 重点、难点 考点及考试要求 教学内容 椭圆 双曲线抛物线必背的经典结论 椭 圆 1. 点P处的切线PT平分△PF1F2在点P处的外角. 2. PT平分△PF1
2、F2在点P处的外角,则焦点在直线PT上的射影H点的轨迹是以长轴为直径的圆,除去长轴的两个端点. 3. 以焦点弦PQ为直径的圆必与对应准线相离. 4. 以焦点半径PF1为直径的圆必与以长轴为直径的圆内切. 5. 若在椭圆上,则过的椭圆的切线方程是. 6. 若在椭圆外 ,则过Po作椭圆的两条切线切点为P1、P2,则切点弦P1P2的直线方程是. 7. 椭圆 (a>b>0)的左右焦点分别为F1,F 2,点P为椭圆上任意一点,则椭圆的焦点角形的面积为. 8. 椭圆(a>b>0)的焦半径公式: ,( , ). 9. 设过椭圆焦点F作直线与椭圆相交 P、Q两点,A为椭圆长轴上一个顶点,连结A
3、P 和AQ分别交相应于焦点F的椭圆准线于M、N两点,则MF⊥NF. 10. 过椭圆一个焦点F的直线与椭圆交于两点P、Q, A1、A2为椭圆长轴上的顶点,A1P和A2Q交于点M,A2P和A1Q交于点N,则MF⊥NF. 11. AB是椭圆的不平行于对称轴的弦,M为AB的中点,则, 即。 12. 若在椭圆内,则被Po所平分的中点弦的方程是. 13. 若在椭圆内,则过Po的弦中点的轨迹方程是. 双曲线 1. 点P处的切线PT平分△PF1F2在点P处的内角. 2. PT平分△PF1F2在点P处的内角,则焦点在直线PT上的射影H点的轨迹是以长轴为直径的圆,除去长轴的两个端点. 3. 以焦
4、点弦PQ为直径的圆必与对应准线相交. 4. 以焦点半径PF1为直径的圆必与以实轴为直径的圆相切.(内切:P在右支;外切:P在左支) 5. 若在双曲线(a>0,b>0)上,则过的双曲线的切线方程是. 6. 若在双曲线(a>0,b>0)外 ,则过Po作双曲线的两条切线切点为P1、P2,则切点弦P1P2的直线方程是. 7. 双曲线(a>0,b>o)的左右焦点分别为F1,F 2,点P为双曲线上任意一点,则双曲线的焦点角形的面积为. 8. 双曲线(a>0,b>o)的焦半径公式:( , 当在右支上时,,. 当在左支上时,, 9. 设过双曲线焦点F作直线与双曲线相交 P、Q两点,A为双曲线
5、长轴上一个顶点,连结AP 和AQ分别交相应于焦点F的双曲线准线于M、N两点,则MF⊥NF. 10. 过双曲线一个焦点F的直线与双曲线交于两点P、Q, A1、A2为双曲线实轴上的顶点,A1P和A2Q交于点M,A2P和A1Q交于点N,则MF⊥NF. 11. AB是双曲线(a>0,b>0)的不平行于对称轴的弦,M为AB的中点,则,即。 12. 若在双曲线(a>0,b>0)内,则被Po所平分的中点弦的方程是. 13. 若在双曲线(a>0,b>0)内,则过Po的弦中点的轨迹方程是. 椭圆与双曲线的对偶性质--(会推导的经典结论) 椭 圆 1. 椭圆(a>b>o)的两个顶点为,,与y轴平
6、行的直线交椭圆于P1、P2时A1P1与A2P2交点的轨迹方程是. 2. 过椭圆 (a>0, b>0)上任一点任意作两条倾斜角互补的直线交椭圆于B,C两点,则直线BC有定向且(常数). 3. 若P为椭圆(a>b>0)上异于长轴端点的任一点,F1, F 2是焦点, , ,则. 4. 设椭圆(a>b>0)的两个焦点为F1、F2,P(异于长轴端点)为椭圆上任意一点,在△PF1F2中,记, ,,则有. 5. 若椭圆(a>b>0)的左、右焦点分别为F1、F2,左准线为L,则当0<e≤时,可在椭圆上求一点P,使得PF1是P到对应准线距离d与PF2的比例中项. 6. P为椭圆(a>b>0)上任一点,
7、F1,F2为二焦点,A为椭圆内一定点,则,当且仅当三点共线时,等号成立. 7. 椭圆与直线有公共点的充要条件是. 8. 已知椭圆(a>b>0),O为坐标原点,P、Q为椭圆上两动点,且.(1);(2)|OP|2+|OQ|2的最大值为;(3)的最小值是. 9. 过椭圆(a>b>0)的右焦点F作直线交该椭圆右支于M,N两点,弦MN的垂直平分线交x轴于P,则. 10. 已知椭圆( a>b>0) ,A、B、是椭圆上的两点,线段AB的垂直平分线与x轴相交于点, 则. 11. 设P点是椭圆( a>b>0)上异于长轴端点的任一点,F1、F2为其焦点记,则(1).(2) . 12. 设A、B是椭圆(
8、 a>b>0)的长轴两端点,P是椭圆上的一点,, ,,c、e分别是椭圆的半焦距离心率,则有(1).(2) .(3) . 13. 已知椭圆( a>b>0)的右准线与x轴相交于点,过椭圆右焦点的直线与椭圆相交于A、B两点,点在右准线上,且轴,则直线AC经过线段EF 的中点. 14. 过椭圆焦半径的端点作椭圆的切线,与以长轴为直径的圆相交,则相应交点与相应焦点的连线必与切线垂直. 15. 过椭圆焦半径的端点作椭圆的切线交相应准线于一点,则该点与焦点的连线必与焦半径互相垂直. 16. 椭圆焦三角形中,内点到一焦点的距离与以该焦点为端点的焦半径之比为常数e(离心率). (注:在椭圆焦三角形
9、中,非焦顶点的内、外角平分线与长轴交点分别称为内、外点.) 17. 椭圆焦三角形中,内心将内点与非焦顶点连线段分成定比e. 18. 椭圆焦三角形中,半焦距必为内、外点到椭圆中心的比例中项. 椭圆与双曲线的对偶性质--(会推导的经典结论) 双曲线 1. 双曲线(a>0,b>0)的两个顶点为,,与y轴平行的直线交双曲线于P1、P2时A1P1与A2P2交点的轨迹方程是. 2. 过双曲线(a>0,b>o)上任一点任意作两条倾斜角互补的直线交双曲线于B,C两点,则直线BC有定向且(常数). 3. 若P为双曲线(a>0,b>0)右(或左)支上除顶点外的任一点,F1, F 2是焦点, , ,则
10、(或). 4. 设双曲线(a>0,b>0)的两个焦点为F1、F2,P(异于长轴端点)为双曲线上任意一点,在△PF1F2中,记, ,,则有. 5. 若双曲线(a>0,b>0)的左、右焦点分别为F1、F2,左准线为L,则当1<e≤时,可在双曲线上求一点P,使得PF1是P到对应准线距离d与PF2的比例中项. 6. P为双曲线(a>0,b>0)上任一点,F1,F2为二焦点,A为双曲线内一定点,则,当且仅当三点共线且和在y轴同侧时,等号成立. 7. 双曲线(a>0,b>0)与直线有公共点的充要条件是. 8. 已知双曲线(b>a >0),O为坐标原点,P、Q为双曲线上两动点,且. (1);(2
11、)|OP|2+|OQ|2的最小值为;(3)的最小值是. 9. 过双曲线(a>0,b>0)的右焦点F作直线交该双曲线的右支于M,N两点,弦MN的垂直平分线交x轴于P,则. 10. 已知双曲线(a>0,b>0),A、B是双曲线上的两点,线段AB的垂直平分线与x轴相交于点, 则或. 11. 设P点是双曲线(a>0,b>0)上异于实轴端点的任一点,F1、F2为其焦点记,则(1).(2) . 12. 设A、B是双曲线(a>0,b>0)的长轴两端点,P是双曲线上的一点,, ,,c、e分别是双曲线的半焦距离心率,则有(1). (2) .(3) . 13. 已知双曲线(a>0,b>0)的右准线与x
12、轴相交于点,过双曲线右焦点的直线与双曲线相交于A、B两点,点在右准线上,且轴,则直线AC经过线段EF 的中点. 14. 过双曲线焦半径的端点作双曲线的切线,与以长轴为直径的圆相交,则相应交点与相应焦点的连线必与切线垂直. 15. 过双曲线焦半径的端点作双曲线的切线交相应准线于一点,则该点与焦点的连线必与焦半径互相垂直. 16. 双曲线焦三角形中,外点到一焦点的距离与以该焦点为端点的焦半径之比为常数e(离心率). (注:在双曲线焦三角形中,非焦顶点的内、外角平分线与长轴交点分别称为内、外点). 17. 双曲线焦三角形中,其焦点所对的旁心将外点与非焦顶点连线段分成定比e. 18. 双曲
13、线焦三角形中,半焦距必为内、外点到双曲线中心的比例中项. 抛物线 结论一:若AB是抛物线的焦点弦(过焦点的弦),且,,则:,。 结论二:(1)若AB是抛物线的焦点弦,且直线AB的倾斜角为α,则(α≠0)。(2)焦点弦中通径(过焦点且垂直于抛物线对称轴的弦)最短。 结论三:两个相切:(1)以抛物线焦点弦为直径的圆与准线相切。 (2)过抛物线焦点弦的两端点向准线作垂线,以两垂足为直径端点的圆与焦点弦相切。 结论四:若抛物线方程为,过(,0)的直线与之交于A、B两点,则OA⊥OB。反之也成立。 结论五:对于抛物线,其参数方程为设抛物线上动点坐标为,为抛物线的顶点,显然,即的几何意
14、义为过抛物线顶点的动弦的斜率. 基础回顾 1. 以AB为直径的圆与准线相切; 2. ; 3. ; 4. ; 5. ; 6. ; 7. ; 8. A、O、三点共线; 9. B、O、三点共线; 10. ; 11. (定值); 12. ;; 13. 垂直平分; 14. 垂直平分; 15. ; 16. ; 17. ; 18. ; 19. ; 20. ; 21. . 22. 切线方程 高考资源网 性质深究 一)焦点弦与切线 1、 过抛物线焦点弦的两端点作抛物线的切线,两切线交点位置有何特殊之处? 结论1:交点在准线上 先猜后
15、证:当弦轴时,则点P的坐标为在准线上. 结论2 切线交点与弦中点连线平行于对称轴 结论3 弦AB不过焦点即切线交点P不在准线上时,切线交点与弦中点的连线也平行于对称轴. 2、上述命题的逆命题是否成立? 结论4 过抛物线准线上任一点作抛物线的切线,则过两切点的弦必过焦点 先猜后证:过准线与x轴的交点作抛物线的切线,则过两切点AB的弦必过焦点. 结论5过准线上任一点作抛物线的切线,过两切点的弦最短时,即为通径. 3、AB是抛物线(p>0)焦点弦,Q是AB的中点,l是抛物线的准线,,,过A,B的切线相交于P,PQ与抛物线交于点M.则有 结论6PA⊥PB. 结论7PF⊥AB.
16、 结论8 M平分PQ. 结论9 PA平分∠A1AB,PB平分∠B1BA. 结论10 结论11 二)非焦点弦与切线 思考:当弦AB不过焦点,切线交于P点时, 也有与上述结论类似结果: 结论12 ①, 结论13 PA平分∠A1AB,同理PB平分∠B1BA. 结论14 结论15 点M平分PQ 结论16 学生对于本次课的评价: ○ 特别满意 ○ 满意 ○ 一般 ○ 差 学生签字: 教师评定: 1、 学生上次作业评价: ○ 好 ○ 较好 ○ 一般 ○ 差 2、 学生本次上课情况评价: ○ 好 ○ 较好 ○ 一般 ○ 差 教师签字: 教学主管意见: 家长签字: ___________ 新梦想教务处
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。