应用概率统计 课后答案

上传人:无*** 文档编号:20360832 上传时间:2021-03-12 格式:DOCX 页数:47 大小:230.65KB
收藏 版权申诉 举报 下载
应用概率统计 课后答案_第1页
第1页 / 共47页
应用概率统计 课后答案_第2页
第2页 / 共47页
应用概率统计 课后答案_第3页
第3页 / 共47页
资源描述:

《应用概率统计 课后答案》由会员分享,可在线阅读,更多相关《应用概率统计 课后答案(47页珍藏版)》请在装配图网上搜索。

1、 课后答案网,用心为你服务! 大学答案 --- 中学答案 --- 考研答案 --- 考试答案 最全最多的课后习题参考答案,尽在课后答案网()! Khdaw团队一直秉承用心为大家服务的宗旨,以关注学生的学习生活为出发点, 旨在为广大学生朋友的自主学习提供一个分享和交流的平台。 爱校园() 课后答案网() 淘答案() !" #%$%&%(%)%*%+-,-.0/

2、 {1{ #%1%&%(%2%3%+-,04-5 61. 798:<;=>p?A@BC;GFDDEEH@I pk = P ( = k) = qk 1p; k = 1; 2; ::: FKJq= 1 p. 2.6 7(1), L = 2 M;ONP( = 2) = pq + qp = 2pq, PRQSfUWVTXYOZ[UWXgAG\]VY^a` L = 3 M;GNP( = 2) = p2q + q2p PRQSfUWVTVXYGZbUWXgA\

3、7]XV^Y cd;Le = k M; P ( = k) = pk 1q + qk 1p = pq(pk 2 + qk 2; k = 2; 3; 4; ::: (2), L = k M;GfKgihkjkl(FV\m]p)@;Gnk 1 jJiNr 1 jklVm ;Gr PFopm ^ 11pr 1(1 p)k 1 (r 1) = Ckr 11pr qk r ; pk = P ( = k) = pCkr k = r + 1; r + 2; :::; FK

4、Jq= 1 p. 3.6 7(1), L 1 = k M;GfKgiskA5tu?vwkx;GFA4@ouy k +z1; :::; 10, r C 4 P ( 1 = k) = 10 k ; k = 1; 2; :::; 6: C 5 10 L 3 = k M;OfKgiskA5tu?Nvu{y 1; z2;:::; k 1 ;OF2ouyk +z1;

5、:::; 10, r C 2 1 C 2 k P ( 3 = k) = k 10 ; k = 3; 4; :::; 8: C 5 10 5 (2), |M}~10`Gu€?‚@f1=S1gT= f5 jtƒKJic„…j‚N1g ;Gr 1 5 P ( 1 = 1) = C5i 95 i : X 105 i=1 †STf 1 = 10g = f5 jtƒ‡ˆ‚10gt;G

6、|‰ 1 P ( 1 = 10) = 105 : {1{ L k = 2; :::; 9 M;‹ŠiŒ † f 1 = kg = f 1 kg f 1 k 1g; 1 5 P ( 1k) = X C5iki(10 k)

7、5 i ; 10 i=1

8、 1 5 P ( 1k 1) = X C5i(k 1)i [10 (k 1)])5 i : 10

9、 i=1 Œq P ( 1 = k) = 1 5 k)5 i (k 1)i (11 k)5 i]: C5i[ki (10 X

10、 10 i=1 4.6 7 2 f2; 3; :::; 12g, FDEŽ@

11、 2 3 4 5 6 7 8 9 10 11 12 P ( = k) 1 2 3 4 5 6 5 4 3 2 1

12、 36 36 36 36 36 36 36 36 36 36 36 5.6 7Bn(m) @N j?N@j‘’M•‚–;G— m j‘’M“”n;Am m

13、 n P ( = n) = X P (Bn(m)jAm )P (Am ) m=1

14、 n 11pmqn m 1(1 1 = m=1 Cnm w )m X

15、 n 11pk+1qn k 1 1 = k=0 Cnm 1 (1 w )k+1 X 1

16、 p = p p(1 )[1 )]n 1 w w

17、 p p p = p 1 (1 )n 1 + (1 )n 1 (1 )n ; w w w FKJk= m 1; p = 1 p.

18、 67˜@K™iAš›œ;G—2jf1;?2; :::g.  B @K™iškj;Gnk 1 jžŸJi;Ghkj . ™ šJi;C ™iškj;ink 1 jK;™žŸJi;ihkjK™iŸšJJ`iAk@Kh™k jš›Ji;MBk @ihk jš›J`—M

19、 1Ak f = kg = B + C = A1B1 A2B2 :::Ak 1Bk + A1 B1A2 B2:::Ak 1 Bk 1Ak Bk : {2{ Ši pk = P ( = k) = P (B) + P (C ) = (0:6 0:4)k 10:4 + (0:6 0:4)k 10:6 0:6 = (0:24)k 10:76 = qk 1p; k = 1; 2; ::: Q <=>p?0:76@ ABC7D

20、E  @Aš›;Gj—2?f0; 1; 2; :::g. STf = 0g @Kh™cjšJi;Gr p0 = P ( = 0) = 0:4: k 1 M; ; f = kg = A1 B1A2 B2 :::Ak 1 Bk 1Ak Bk + A1 B1 A2B2 :::Ak Bk Ak+1 ŒqN pk = P ( = k) = (0:6 0:4)k 1 0:6 0:6 + (0:6 0:4)k

21、 0:4 = (0:24)k 10:456; k = 1; 2; ::: €; ADqEBCDE` 7. 7(1) g (x) = 1 x+h F (t)dt –I 1 0 0 h Rx ) = 0, 3 0 ; (x 0)(x)(). , ;2; (+1) = 1; ( 10 , L x >

22、y M;= x y (> 0), — Z F (t)dt# (x)(y) = h "Zx F (t)dt y 1 x+h y+h Zy F (t)dt# : = h "Zy+ F (t)dt 1 y+ +h

23、 y+h < h, — "Zx Zy F (t)dt# (x)(y) = h F (t)dt 1 x+h y+h = "Zy+ F (t)dt Zy F (t)dt Zy+ F (t)dt#

24、 h 1 y+ +h y+ y+h = "Zy+h F (t)dt Zy F (t)dt# h 1 y+h+ y+ = F (y + h + 1 ) F

25、 (y + 2 ) 0; ( ŠiyŒ+ h + 1 > y + 2 ) FKJ0< 1; 2 < 1, wcuJi`D {3{ 0 < h ;G—(x)(y) = F (y + + 1h) F (y + 2h) 0 ` L h < 0 MgiQ8h;; (x) 7 20 , ŠDJi(x)= F (x + h), FKJ0< < 1 ;GKŠ 8 lim F (x) = 1 ; x!+1 < x lim F (x) = 0 : ! Q

26、 8 lim (x) = 1 < x!+1 (x) = 0 : 3 , (x) = F (x + h), F : lim x! 0 Š ŠiŒ(x) ;G lim (y) = lim F (y + h) = F (x + h) = (x); y!x y!x Q` 8. 7(1) ŠiŒ N  Z +1 1 dF (y) = 1 F (y)j+1 + Z +1 1 F

27、 (y)dy = xyyxxy2 x!+1 x Z +1 1 x!+1 F (x) xy dF (y) = x lim lim x = lim [ F (x)] + x!+1  x F (x) + Z + y2 F (y)dy; x 1 1 1 + 1 y2 F (y)dy + Zx 1

28、 R +1 1 F (y)dy x + 2 x 1 lim y ! 1 x 1 F (x) 2 =1 + lim x = 1 + 1 = 0: 1 x!+1 x2 (2) gi(1) ‡;

29、Gr` (3) L x > 0 M; Rx+1 y1 dF (y) < +1, —‘7Rx+1 y1 dF (y) = +1, —KŠiŒ Z + 1 y dF (y) < Z + 1 y2 F (y)dy; x x 1 1 R + 1 1 F (y)dy = +1, ŒqN x y2 + 1 +

30、1 1 x 1 F (y)dy lim x dF (y) = lim [ F (x)] + lim y2 R 1 x ! 0+ Z x y x ! 0+ x ! 0+ x 1

31、 F (x) 2 = lim [ F (x)] + lim x 1 x!0 + x!0 +

32、 x2 = lim [ F (x)] + lim F (x) = 0: x!0+ x!0+ {4{ 610. 7( ; ) q A Jic;G—( ; ) A p.d.f. @ f (x; y) = ( 1 ; (x; y) A = ( 1 ; 0 < y < 2x

33、 x2; 0 x 2 0; F2 0; F (A) (A) FKJ(A) = R 02(2x x2 )dx = (x2 1 x3 )j02 = 4 . Š| AŒp.œd.f. 3 3 Z ( 0; F 1 f (x; y)dy = 3 (2x

34、 x2); 0x2 f (x) = 4 6– IGL0 x2 M; ADE—?@ 3 x 1 Z0 F (x) = P ( < x) = (2t t2)dt = (3x2x3);

35、 4 4 Q F (x) = f (x) =  8 4 (3x2 x3); 0 < x2 ; > 0; x 0 1 < 1; x > 2 >

36、 (2x x ); 0 x 2 : = Z 1 f (x; y)dy = 4 : dx ( 0; 2 F dF (x) 3 611. 7ABC A“h@;G”@‘AB `

37、—L 0 < x < h M; ADE—?@ 1 1 2 F (x) = P ( < x) = 2 ABh 2 AB(h x) ; 1 2 ABh ’ A @;ŸB@VcK‹i›;Gfifly= x ABC A‡0;B@0 ;G|‰ A0B==AB = h x ; A0B0 = AB h x ; h

38、 h (h x)2 F (x) = 1 : h2 Q 613.  8 > 0; < F (x) = 1 > : 1;  (h x)2 x0 ; 0 < xh : h2 x > h 75,P ( k) = P (1

39、k) = P ( 1 k) = 1 P ( < 1 k) = 0:25, ‰| P ( < 1 k) = 0: r 1 k = 0; 29; k = 0:71. {5{ 15. 7‚ P( ). —KŠ\i‡]„ 1 X pk = P ( = k) = P ( = kj = j)P ( = j): j=k Ši‰ j = j B(j; p), r P ( = kj = j) = Cjk pk (1 p)j k ;G 1 k k j k j pk

40、 = X Cj p (1 p) r j=k j! 1 j! k j k j = X p (1 p) r j=k k!(j k)! j!

41、 = k pk e 1 j k(1 p)j k X k! j=k (j k)! k pk = e k! ( p)k = e k! Q P( p) 19.6 7‚ŠF(x) Alim F (x) = A = 1, x!1  e (1 p) p; k = 0;

42、 1; 2; ::: Q A = 1, f (x) = F 0(x) = ( 0;F 2x; 0 < x < 1 620. 7(1), Z x F (x) = P ( < x) = f (t)dt 8 2 x2 8 2 x2 ; 0 < x1 ; 0 < x1 > 0; x 0 > 0; x 0 1

43、 1 = 1 1 2 3 = 1 2 > + 2x x ; 1 < x2 > 2x x 1; 1 < x2 2 2 2 2 > > < 1; x > 2 < 1; x

44、 > 2 > > > > > > : : (2) P ( < 0:5) = F (0:5) = 1 0:52 = 0:125.

45、 2 P ( > 1:3) = 1 F (1:3) = 1 2 1:3 + 1 (1:3)2 + 1 = 0:245; 2 P (0:2 < < 1:2) = F (1:2) F (0:2) = 2 1:2 1 (1:2)21 1 (0:2)2 = 0:66: 2 2 {6{ 21.6

46、 7(1) 1 1 1 F1 (y) = P ( 1 < y) = P < y = P > = 1 F y y dF1 (y) 1 1

47、 0 1 1 f1(y) = = f = f dy y y y2 y 1 2 ; 0 < 1 < 1 = ( 2 ; 0 < y < 1 = 3 y2 (

48、0; F 0; F y y y (2) ( ( 2 j j P ( y < < y); y > 0 F (y) F ( y); y > 0 F (y) = P ( < y) = 0;

49、 y0 = 0; y0 2 dy ( f (y) + f ( y); y > 0 ( f (y); y > 0 f (y) = dF1 (y) = 0; y0 = 0; y0 = 8 2y; 0 < y < 1 = ( 0;F

50、 > 0;y0 2y; 0 < y < 1 < 0; y1 > (3) :

51、 F3(y) = P e < y = P (< ln y) = P ( > ln y) = 1 F ( ln y): f3(y) = dF1 (y) = 1 f (

52、 ln y) dy y ( 2 ln y ; 0F = ( 2 ln y = 0; y 0; y < ln y < 1 22.6 7(1) AŒœDEŽ@  ; e 1 < y < 1 F n X pn = P ( = n) = pnm m=0 ne n n = Cnmpm (1 p)n m = e ;

53、n = 0; 1; 2; ::: X n! m=0 n! Q P( ). (2) AŒœDEŽ@ 1 X pm = P ( = n) = pnm n=m {7{ Q P( p). 23.6 7(1) f (x) = f (y) =  pm me 1 [ (1 p)]n m = X m! n=m (n m)! pm

54、 me e (1 p) = ( p)m = e p; m = 0; 1; 2; ::: m! m! + f (x; y)dy = ( +1 x 1 = ( x 0; xe (1+y) 2 dy; x 0 0; ; x 0 Z 1 0 x > 0 xe x > 0; + ( R +1 x

55、 1 = ( 1 f (x; y)dx = xe (1+y) 2 dx; y 0 0; 2 y 0 0; Z 1 R 0 y > 0 (1+y) ; y > 0; ‰@ f (x; y) = f (x)f (y), 7

56、 (2) f (x) = +1 f (x; y)dy = x1 8xydy; 0x < 1 = ( 4(x x3 ); 0x < 1 Z ( 0; F 0; F R f

57、(y) = +1 f (x; y)dx = 0y 8xydx; 0y < 1 = ( 4y3; 0y < 1 Z ( 0; F 0; F R ‰@ f (x; y) 6= f (x)f (y), 7 (3) f (x; y)dy = (

58、 f (x) = 0; k1 ) k2 ) x0 Z + 1 R +1 1 x k1 1 (y x) k2 1 e y dy; x > 0 x +1 1 1

59、 ( xk1 1tk2 1e x e tdt; x > 0 = ( xk1 1e x; x > 0 = k1 ) k2 ) 0; k1 ) 0; x 0 x 0 R 0

60、 Q 624. 7(1) f (x) f (y)  k1 ; 1), k2 ; 1), ‰@ f (x; y) =6 f (x)f (y), 7 ( 0; F ( 0; 2x F = +1 f (x; y)dy = R 2 x2 + xy dy; 0x1 = 2x2 + ; 0x1 0 3 3 Z ( 0; F ( 0; F = +1

61、f (x; y)dx = R 1 x2 + xy dx; 0y2 = 1 0y2 0 3 6 (2 + y); Z (2) L 0 y 2 M; f (x; y) f j (xjy) = f (y) {8{ (3) (4) FKJ  8 x2+ xy

62、 ( 6x2 +2xy 3 0; F 0; F < 2+y ; 0x1 = 61 (2+y) ; 0x1

63、 = : P ( + > 1) = P (( ; ) 2 D) = Z ZD f (x; y)dxdy 1 2 xy

64、 = Z0 dx Z1 x x2 + dy 3 1 x2(1 + x) + x [4 (1 x)2 ] dx = Z0 6 1 5 4 1

65、 65 = Z0 x3 + x2 + x dx = 6 3 2 72 1 1 = P< 1 ; < 1 ; P< < 2 2

66、 2 j 2 P< 1 2 1 1 2

展开阅读全文
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

相关资源

更多
正为您匹配相似的精品文档
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!