模具外文文献翻译-注塑成型中颗粒填充物聚丙烯的冷却情况【中文4060字】【PDF+中文WORD】
模具外文文献翻译-注塑成型中颗粒填充物聚丙烯的冷却情况【中文4060字】【PDF+中文WORD】,中文4060字,PDF+中文WORD,模具,外文,文献,翻译,注塑,成型,颗粒,填充物,聚丙烯,冷却,情况,中文,4060,PDF,WORD
【中文4060字】
注塑成型中颗粒填充物聚丙烯的冷却情况
何敏嘉,费尔布
陈艳译
摘要:聚丙烯复合材料的冷却情况被用于在同一注塑成型过程中,对影响散热性能的各种填料(磁铁矿,重晶石,铜,滑石,玻璃纤维和锶铁氧体)于不同比例下的调查。注塑成型期间,分别对室温和高温时热电偶在型腔模具表面的测量记录和对斜坡冷却曲线的热扩散分析中发现:该注射成型的工艺和该模具的填充材料使冷却曲线显示出不同的合并路段。所以说热扩散系数是个暂时性的系数。热扩散表明,最高值为30%的滑石粉填充聚丙烯,在最短的冷却时间可以发现35%铜填充聚丙烯。系统性变化的具有热传递性能的复合材料,在不同的填充材料和填充比例中使注塑过程优化,并以此来定制热流性能。此外,滑石粉填充聚丙烯使设计的复合材料与预定的最高热流相附,是热传递的首选方向。
关键词:聚丙烯 ;热性能;注塑成型;微粒填料
1.导言
常用的塑料,如聚丙烯和聚酰胺都有一个低导热系数。不过在汽车行业,如传感器或执行器,需要新的材料或具有高导热性。通过增加合适的填料,比如塑料,其热行为聚合物是可以改变的。系统的热扩散大于1.2/秒,从0.2/秒多为补聚丙烯。这种填充聚合物具有较高的热导率,由于广泛的应用在电子封装上而成为一个越来越重要的研究领域。较高的热导率可以通过使用一个合适的填料达到,如铝,碳纤维和石墨,铝氮化物或磁铁矿颗粒。此外,在注塑机上模具的冷却反应,是受聚合物填料的热性能影响。然而,填充材料比较能体现出热导率的价值观。大幅比较不同的材料,是很困难的,甚至可以说是不可能的。 因此,聚丙烯样品不同的填充剂(四氧化三铁,硫酸钡,铜,玻璃纤维, 滑石粉)的挤出和注射成型用各种体积分数( 0-50 % )来表示 。
磁铁矿重晶石一般是用来增加重量的聚丙烯,如:为一瓶措施,锶铁氧体是用聚合物粘结磁铁,玻璃纤维是用于加固新材料,滑石粉是一种反阻断剂。然而, 铜被选为额外灌装机,因为它具有高度的热导率相对于其他材料。 热性能,这些注射成型样品和注塑成型行为人调查和相关的金额和种填充材料。
2.理论思考
傅立叶法的热量传递,在一维给出
与温度T ,时间t ,位置x和热扩散在一个均质体,热扩散率A和热导率L是相互关联的,由具体密度r 和具体的热容量Cp根据
假设一名注射成型工艺与恒温灌浆期为聚合物的温度TP和相对恒定的温度Tm及作为温度独立的热扩散,解析解决式( 1 )结果
在式( 3 ) ,S是指壁厚注射模压部分和T的温度zai 时间t后注射。忽略高阶计算,式( 3 ) 可以减少为
式( 4 )给出的关系冷却速度和热扩散率,在注射成型过程中,凡高热扩散导致更高的冷却速度和短周期的过程。
3.实验
3.1 材料
试验材料供应合作编写RTP的有限公司(法国)几种聚丙烯( PP )化合物与各种填料(四氧化三铁,硫酸钡,铜,玻璃纤维,滑石粉)在挤出过程中讲到的类似在式 [ 2 ] 。填充物材料是常用材料在工业产品。填料粒子不具备表面涂层可以影响热性能。一些选定的性能灌装材料列在表1
图1.模具注塑成型实验。
图 2 .模具与腔准备测试样本,在一个注塑机。立场与热电偶温度测量标志是一个箭头。
3.2 热扩散率测量
热扩散的高分子材料,是衡量一个瞬态法,与雷射闪光实验有密切的关系。温度信号由热电偶转移到上侧的抽样检验和注册,被转让温度信号启动一个热平衡过程该标本,记录由热电偶作为区别样品的背面和恒定温度,用来为评价的热扩散率。最小二乘算法是用来确定热扩散率,而变系统地热扩散值在一个特别设计差分计划。精确的测量多于总量的3 % 。 为热扩散率测量,小缸10毫米直径5-6毫米的身高,剪下的注射成型棒(参见图1 ) 。
3.3 注塑成型
与注塑机标准样品测量拉伸性能连同一棒热测量10毫米直径和130毫米的长度分别准备在一模(参见图1 ) 。在腔的拉伸试验棒铬( K型)热电偶中的应用。 在注塑成型实验温度记录每0.5秒一个数字万用表和储存在一台个人电脑。热电偶s大约0.2毫米成空腔。因此,一个良好的热之间的接触聚合物和热电偶,甚至后缩的成型,是为了保证录得更好的温度时间。用过的注射液成型参数列于表2 。由此时代特征的注塑成型周期提交见表3 。
4 结果与讨论
图 3 比较冷却曲线填补聚丙烯与聚丙烯复合材料的各种填料组分的四氧化三铁。
在图 3 中,聚丙烯的冷却过程在一个时间在温度测量所热电偶达到最高值约。 随着越来越多的时间观测到温度下降。 经过在模具打开,冷却行为记录与热电偶变化,因为它是无较长的接触与注射成型的材料。由于以大直径的棒,这个时间() ,直到模具是打开及注射成型零件跳伞选择相对较高,以确保该部分肯定凝固。 可以看出,在图 3斜率曲线变化显着后,这对应于时间那里后,压力是拆除。此外,图。三指出这种复合材料在腔降温快随着越来越多的磁铁矿分。要达到的温度条-温度远远低于凝固的采样聚丙烯需求,在描述实验的时候,,而冷却时间聚丙烯的Fe3O4减至(参看表四) 。减少冷却时间,是在好的协议所增加的热扩散的磁铁矿填充复合材料由于高的热扩散粒子(参见附表一) ,其中的线索,就式( 4 ) ,以一个增加冷却速度。温度时间依赖性图。 3条不遵循一个简单的线性行为预期温度-时间曲线由式( 4 )在对数计。 只为填补聚丙烯实测值可安装一个单一的直线之间大约15 和第54秒的这条路线通往一个扩散(参见式( 4 ) ) 。其他测量冷却曲线的聚丙烯复合材料的磁铁矿装有在每个个案,两直线,为高温第和低温的地区。热扩散估计从斜坡上的回归直线
计算热扩散系数的的温度较高部分的冷却曲线有一点点低于扩散系数测量暂态技术,而计算热扩散酶的温度越低,部分地区的冷却曲线满足实测值扩散图 3 比较冷却曲线填补聚丙烯与聚丙烯复合材料的各种填料组分的四氧化三铁。该符号字里行间都回归直线(参见文) 。
图 4显示测得的热扩散率数据的调查样本中可以看出, 该热扩散的磁铁矿-聚丙烯复合材料是由为填补聚丙烯截至 增加磁铁矿负荷。因此,冷却时间变短为高磁铁矿填料馏分(图三) 。 原因之一,为改变在边坡的冷却曲线显示图3是改变热扩散率随温度的,其中就表现在是图 5 磁铁矿和重晶石聚丙烯复合材料随着温度的升高热扩散率降低。因此,价值观来自模实验应小于测值的复合材料在室温。 热扩散的PP基体中,主要是所造成的声子,是关系到等于无害速度v和平均自由程长度L声据上述凝固温度的影响PP基体(约条,测量的DSC ) ,热扩散的基质减少,以致降低了体积弹性模量k ,因而减少了声子速度 ,并降低平均自由程的长短 。此外,上述凝固温度日Ts无晶在聚丙烯矩阵是在低于Ts结晶下在聚丙烯基体中出现的。存在或缺乏微晶影响体积弹性模量K和声子自由的道路。其原因是不同实验都是非等压条件在注塑成型过程和非等温条件样品的厚度的冷静过程,磁铁矿,重晶石,玻璃纤维, 滑石,永磁铁氧体和铜填料比较空聚丙烯图 6 冷却的过程与铜填充聚丙烯存在差异。
图 4 在室温下热扩散价值观注射成型聚丙烯样品中不同填料和各种填料的比重来衡量暂态技术(参见文)
图 5 温度依赖性的热扩散的磁铁矿和重晶石填充聚丙烯的填料含量
图 6聚丙烯复合材料的填料在30vol%后
铜填充复合降温速度远远超过其他调查材料。该温度的影响剩余聚丙烯是,在整个注射液成型工艺高于气温其他调查材料。冷静的过程与其他复合材料没有显示有较大的差别。该气温的磁铁矿装聚丙烯是一种比温度低一点的重晶石填充聚丙烯。气温的锶铁氧体聚丙烯复合材料,再次是低于那些该磁铁矿填充聚合物。 而测得的热扩散率的滑石粉填充聚丙烯是远高于热扩散其他调查材料,甚至远高于这对铜填充聚丙烯,冷却行为滑石粉是较小较其他调查材料。魏登费勒等人研究出该滑石粉沿着自己的方向填充复合一个对齐的滑石粉。测量的热扩散率是平行于这个主轴的最高热导率,而温度测量在注塑成型过程中揭示扩散垂直流方向发展。这意味着,该滑石粉填充聚丙烯样品中有强烈各向异性最高并在流动方向低垂直于水流。尽管出现了高导热的铜(参看表1 )相对于其他用于填充材料, 冷静是相对的测气温的。结果表明:这是一个相对的措施,一个最理想的互联网络的高导电粒子在聚丙烯基体,低于1 % 和极差相比,互联磁铁矿55 %或互联的重晶石46 %。 作者还讨论了影响颗粒大小和形状的聚丙烯矩阵[ 2,3 ] 。
图 7 各种聚丙烯复合材料的冷却时间(从200下降到60度)
冷却时间是线性依赖于填料量分数在聚丙烯基体中,数据计算回归系列于表6 。它可以清楚看出,铜填充聚丙烯降温下降速度,远远超过其他调查材料。冷却的情况,聚丙烯重晶石, 锶氧体和磁铁矿是相似的,而磁铁矿降温一点点速度比所有其他材料。
5 结论
冷静的过程中聚丙烯在注塑成型工艺可以减少所使用的磁铁矿重晶石,锶铁氧体,玻璃纤维,滑石粉和铜填料。 冷却过程中,由于的依赖了传热和潜热凝固温度,所以不能完全解释由简单指数律来自傅立叶的法热传导。此外,在注射成型周期,的注射液成型周期和热扩散的聚丙烯矩阵周期,冷却曲线显示不同的合并路段。 此外,各向异性的热传导性,例如: 为滑石粉填充物,或低互联的粒子影响冷却行为,如铜。 为使用的材料和在调查范围填料冷却时间冷却下来注射成型复合材料,从温度200 降至60是线性依赖于填料。铜在聚丙烯基体中的冷却时间可缩短从50.5 至20,9秒。在这个过程循环中,具有较高热传递性能的一些复合材料,可以用来优化模具进程提高冷却速度。
文献:
[1] Ba¨ck E. Magnetite gives new recyclable dense polymers for the automotive industry Plastics Reborn in 21st Century Vehicles, Conference Proceedings. Rapra Technical Ltd; May 1999.
[2] Weidenfeller B, Ho¨fer M, Schilling F. Thermal and electrical properties of magnetite filled polymers. Composites: Part A 2002;33:1041–53.
[3] Weidenfeller B, Ho¨fer M, Schilling F. Thermal conductivity, thermal diffusivity, and specific heat capacity of particle filled polypropylene. Composites: Part A 2004;35:423–9.
[4] Wong CP, Bollampally RS. Thermally conductivity, elastic modulus, and coefficient of thermal expansion of polymer composites filled with ceramic particles for electronic packaging. J Appl Polym Sci 1999;74:3396–403.
[5] Lu X, Xu GJ. Thermally conductive polymer composites for electronic packaging. J Appl Polym Sci 1997;65:2733–8.
[6] Xu Y, Chung DDL, Mroz C. Thermally conducting aluminium nitride polymer-matrix composites. Composites: Part A 2001;32:1749–57.
[7] King JA, Tucker KW, Vogt BD, Weber EH, Quan C. Electrically and thermally conductive nylon 6.6. Polym Compos 1999;20(5):643–54.
[8] Yu S, Hing P, Hu X. Thermal conductivity of polystyrene-aluminum nitride composite. Composites: Part A 2002;33:289–92.
[9] Carslaw HS, Jaeger JC. Conduction of heat in solids. Oxford: Oxford University Press; 1986.
[10] Duifhuis P, Weidenfeller B, Ziegmann G. Funct Compd, Plast Eur 2001;11:42–4.
[11] Parker WJ, Jenkins RJ, Butler CP, Abbott GL. Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity. J Appl Phys 1961;32:1679–83.
[12] Schilling FR. A transient technique to measure thermal diffusivity at elevated temperatures. Eur J Miner 1999;11:1115–24.
[13] Clauser C, Huenges E. Thermal conductivity of rocks and minerals. In: Ahrens TJ, editor. Rock physics and phase relations, a handbook of physical constants. American Geophysical Union Reference; 1995.
[14] Landolt-Bo¨rnstein. In: Madelung O, White GK, editors. Numerical data and functional relationships in science and technology, new series, group III: crystal and solid state physics, vol. 15. Metals: electronic transport phenomena, subvolume c: thermal conductivity of pure metals and alloys. Berlin: Springer; 1991.
[15] Gardon R. Thermal conductivity at low and moderated temperatures. In: Blazek A, editor. Review of thermal conductivity data in glass. International Commission on Glass; 1983.
[16] Weidenfeller B, Riehemann W, Lei Q. Mechanical spectroscopy of polymer-magnetite composites. Mater Sci Eng A 2004;370:
10
收藏