研究型腔压力和结合型旋涡真空泵机油滤清器的动态分析【中文3170字】【PDF+中文WORD】
研究型腔压力和结合型旋涡真空泵机油滤清器的动态分析【中文3170字】【PDF+中文WORD】,中文3170字,PDF+中文WORD,研究,压力,结合,旋涡,真空泵,机油,滤清,动态,分析,中文,3170,PDF,WORD
【中文3170字】
研究型腔压力和结合型旋涡真空泵机油滤清器的动态分析
王Licun1 陈Yajuan2 王Xudong1 张Xianming1
(1. 重庆科技大学教育部废油回收技术与装备工程技术研究中心,重庆,400067
2.中国嘉陵工业集团有限公司工程与技术研究所,400032)
摘要:动态涡盘中的气体在不同方向的作用可分为轴向气体力,径向气体动力,切向气动力,和倾覆力矩和旋转扭矩两种力矩。研究油过滤器涡旋真空泵的动力是研究动态平衡设计,强度设计和可靠性分析的第一步。在本次研究中切向气电,气径向力和轴向气体力在每个组合曲线涡旋真空泵工作腔的大小,方向和作用位置都得到了详细的分析。并且在动力学分析的基础上完成了计算公式的推导。本次研究的主要目的在于为原动机的选择提供合理的设计原理,为有限元分析提供计算载荷,为结构强度研究和主要部件功率分析提供合理的计算数据和理论基础。
关键词:涡旋式真空泵;连接剖面;模腔压力;动态分析
1引言
气体中的动态涡流盘作用不同的方向上可分为轴向气体力、径向气体动力、切向气动力、力矩由倾覆力、矩旋转扭矩力。强度设计和可靠性分析是研究设计油过滤器旋涡真空泵的动力的第一步[1-2]。每个复合曲线机油机滤的工作室旋涡真空泵大小,方向和切向气体的位置的作用电力,燃气径向力和轴向气体功率别为详细的分析 [3-6]。完成的推导计算公式,并奠定了基础动力学分析。提供一个合理的 设计依据,为原动机的选择,以提供有限元分析的计算负荷并提供了计算,理论基础,结构强度和动力分析主要组件[7-10]。
2气动力分析
2.1模腔压力计算
假设每个空腔压缩处在绝热中:
Pi—在腔室中的压力;
Ps—在吸入室压力;
Vi—容积;
Vs—在抽吸腔室的最大容积;
Si—腔室的区域;
Ss—抽吸腔室的最大容积;
h—涡旋盘的高度;
K—比热容比;
i=1, 2, 3.
2.2气动力计算
气动力计算是所有的基础动态计算,用不同的旋涡型材不同的气体强度计算方法,结合类型行气动力,其计算过程如下。
作用在气电动力涡盘和扭矩如图。
图1气动力和轨道旋涡瞬间
(1) 切线天然气发电
施加在动态涡气动力沿着所述偏心轴切线方向光盘,被称为切向气力,用符号 。切向气动力是用一种力量阻止 曲轴的运动,以及运动涡旋盘旋转和涡流盘倾覆。
图2给出了分1'',2'',3''都在静态涡流的内壁表面盘,而点1',2',3'是的表面上动涡旋盘的外壁上。
图2切线气体的轨道旋涡力量
当涡表面是由分隔 1-1',2'-2',对涡盘3'-3'的作品示位置,下左部分是在同一压缩腔压力上处相等,上另一方面,右上部分是在不同腔室,其中的压力彼此不同。
对拥有的涡卷线对称动态,静态涡旋盘和定义切向力,切向联合力量作用于相邻密封腔必须通过和垂直于中心连接的中点,它是通过动态的,静态的基圆上形成涡盘。毕竟,切电源引起的通过在相邻的不同的压缩压力室。与动态涡旋盘的移动,工作腔中的气体压力和端
空腔的脸部区域会发生变化,所以切向随着曲柄角度θ的变化的电源。该本文的研究对象是一个新的复合曲线包且对起跑线不改正。应有到研磨过程的要求,本包装和工具一轮的开始部分会干扰,使过渡腔连接到排气室为时尚早。以及与所述排气开始的角度,根据不同的角落移动,我们将尽关于切向权力分开讨论遭遇了涡旋盘。排气角由第3章确定动态涡光盘可以切向气动力被分成两个主要阶段为角变化。在这个阶段,工作腔从形成动,静涡旋盘是吸入室,压缩室和排气室。因此,抽吸之间的压力差室和压缩室,所述压缩室和排气室产生的MMD - 2第18届中国机构与机器科学国际会议3
切向力。本文的研究对象是复合曲线包裹,因此,该工作室
由不同的曲线,角落里的不同角度范围内,从而产生切向的变化
动力方面,总的切向力。
在排气房间和该压缩腔之间的切向电源排气室的面积是:
在吸力房间和该压缩腔之间的切向电源的压缩室面积是:
上抽吸区的切向功率腔是:
P1排气室压力; P2在压缩腔压力;P3压吸入室;Ps进气用压力
li1,li2 ,li3 ,l01,l02,l03,示于图2中。
因为压缩之间的连接的室和排气室,以及新的吸室尚未形成,,计算和。
总的切向气动力是每一个总和切线能量活跃在各个章节
切割面积,其计算公式为:
(2)径向天然气发电
径向气体动力沿规定在动态的,静态的基圆连接线
涡盘,用符号Fr表示。
径向气体动力Fr值从中心驱动 动涡盘以静涡旋盘的中心, 作为可调偏心涡旋压缩,主轴偏心率降低的倾向,从而使径向间隙扩大,增加气体的量,泄漏通过径向游隙,同时也可引起变化的摩擦损失。
在排气室中,径向GADS权力作用在轨道旋涡是:
在压缩室中,径向GADS作用于轨道旋涡权力是:
类似地,在吸入室,该作用于轨道旋涡径向GADS权力是:
总放射功率为:
(3)轴向气体动力
轴向气动力是电油过涡流真空泵最重要的气体 ,也就是涡流真空泵的主要缺点之一 ,用符号Ft。
如示于图3,沿轴向气动力沿着所述偏心轴的轴线方向移动的应用动涡盘,动动涡盘沿轴向偏离,以静态涡旋盘,增大轴向间隙,从而导致增加径向气体泄漏,降低了真空泵容积效率。为了避免这种情况,我们必须计算由压缩气体产生的轴向动力,并试图平衡可靠和合理的气体轴向动力。
图3轴功率的影响
在图3中,1是固定涡旋盘,2是 动态涡旋盘,3是站立。
本研究针对基于线结合在电弧中,中间压缩的涡旋室和吸入室构成
不完整的基圆的渐开线,它可以被制成圆弧和圆的渐开线。在排气室中,由于圆渐开线轮廓,遭受轴向气体力的地区
关于动态涡流盘是(2.10)和(2.11),即:
我们可以分别计算出轴功率区域根据中间的轮廓压缩室和吸入室的
不同的角落:
首先,
也就是
我们可以得到轴向区域:
然后,
也就是
,我们可以得到轴向区域:
在吸入腔,首先
,也就是
我们可以得到轴向区域:
然后。
也就是
我们可以得到轴向区域,
因此,在动态涡轴向气体动力光盘是:
Ps是连词档机油吸气压力过滤涡旋真空泵,K是特定比例
热。
(4) 倾覆力矩
曲柄销的圆盘中的移动涡流运动点是飞机上的不一样的垂直的轴线而导致动态涡盘倾覆由于点到生成物切气力F和径向气体力和驱动力F
倾覆力矩:
其中,h表示线涡的高度; H表示涡磁盘驱动器表面之间的距离。
倾覆力矩将增加的静态和动态涡旋盘之间不均匀的差距,机油滤清器是阻碍旋涡真空泵的机械效率和容积效率的的主要因素之一。
(5)旋转力矩
当基圆中心为移动涡流磁盘驱动器中心时,垂直于切向曲轴,切向气力的方向在动态涡旋盘圆的中点作用于静涡盘基圆中心,动涡盘绕轴偏心旋转线转矩,即旋转扭矩,其方向与动涡盘旋转的方向相同。该旋转扭矩会破坏滤涡旋真空泵油的正常工作,因此必须在使用运动涡旋盘的旋转时应严格限制防旋转机构的结构设计。已知气体的切向力施加到曲轴的旋转分析的中点从曲柄的切向力的力矩点中心线与曲柄销中心线,在图中所示4 。切向力移动到曲轴的中心销,曲柄销只是削减力的作用,但还了一下力的作用。
图4切向力的移植图表
扭矩为力 运动旋涡 沿线圈曲柄销方向中心线 涡盘转的旋转,它被称为 旋转转矩由下面的公式为:
3主轴功率分析
如图5所示,心轴力如下:
图5主轴的力矩
涡盘自动切断偏心反应力q。动涡盘的规模和作用同于总切削方向 ,q垂直作用于偏心轴套孔中心线,外界的作用在径向方向上。主轴和偏心的部分在底表面上的偏心孔具有压缩腔引入后面的压力p ',所以作用在向下的纺锤力
从主要和辅助轴承削减反作用力,径向反应力,轴向反作用力的。平衡重旋转惯性力
和力矩惯性。
主,副轴承的摩擦扭矩,动态涡盘曲柄销 。从驱动器的驱动扭矩机制
.
4结论
在涡流分布的设计研究中,应瞄准单档及其改善或限制。优化目前参数,在连型材轴承上的弧长和圆的渐开线 进行了研究。这首先推导的线相结合,油过滤器涡旋真空泵径向切到和轴向气体力,倾覆力矩和旋转基于线油过滤器涡旋真空泵结合扭矩计算公式 。应力分析十字滑环, 动涡盘,主轴三个主要组成部分的油的动态平衡,奠定过滤器旋涡真空泵设计的强度设计和可靠性的坚实的基础。
致谢
这项工作得到了国家自然科学基金中国的(50805149),重庆市自然科学基金科学技术委员会科学科技项目基金(cstc2011ac6086), 重庆市教育委员会科学科技项目基金(kj110710),重庆科学与技术大学项目(kjtd201019,kjtd11211),CTBU博士点基金 (1152005)的支持。
MMD-2 第 18 届中国机构与机器科学国际会议 1 Research on cavity pressure and dynamic analysis of oil filter vortex vacuum pump of conjunction profiles WANG Licun1 CHEN Yajuan2 WANG Xudong1 ZHANG Xianming1(1.Engineering Research Center for Waste Oil Recovery Technology and Equipment of Ministry of Education,Chongqing Technology and Business University,Chongqing,400067 2.Research Institute Eng.And Tech.,China Jialing Industry Croup,Co.,Ltd.400032)Abstract:The role of gas in the dynamic vortex disc in different directions can be divided into axial gas power,radial gas power and tangential gas power,and torque consist of overturning moment and the rotation torque.The dynamics of the oil filter vortex vacuum pump is the first step to study the dynamic balance of design,strength design and reliability analysis.The size,direction and role of location of the tangential gas power,radial gas power and the axial gas power were detailed analyzed,which happened in the each working chambers of the composite curve vortex vacuum pump.Completed derivation of the formula for calculating,and lay the foundation for the kinetic analysis.In order to provide a reasonable design basis for the selection of the prime mover,to provide the computing load of finite element analysis and to provide the calculations,theoretical foundation structural strength and analysis of power in the main components.Key words:Vortex vacuum pump;Conjunction profiles;Cavity pressure;Dynamic analysis 1 Introduction*The role of gas in the dynamic vortex disc in different directions can be divided into axial gas power,radial gas power and tangential gas power,and torque consist of overturning moment and the rotation torque.The dynamics of the oil filter vortex vacuum pump is the first step to study the dynamic balance of design,strength design and reliability analysis 1-2.The size,direction and role of location of the tangential gas power,radial gas power and the axial gas power were detailed analyzed,which happened in the each working chambers of the composite curve oil filter vortex vacuum pump 3-6.Completed derivation of the formula for calculating,and lay the foundation for the kinetic analysis.In order to provide a reasonable design basis for the selection of the prime mover,to provide the computing load of finite element analysis and to provide the calculations,theoretical foundation structural strength and analysis of power in the main components 7-10.2 The analysis of the gas power 2.1 The cavity pressure calculation National Natural Science Foundation of China(50805149),Chongqing Science and Technology Committee Science and Technology Project Foundation(cstc2011ac6086)Assuming that each cavity compression is adiabatic process:KKKsssisssiiiVhSSPPPPVhSS iPpressure in the chamber;sPpressure in the suction chamber;iVvolume of chamber;sVthe maximum volume in suction chamber;iSarea of chamber;sSthe maximum volume of suction chamber;hthe height of vortex plate;Kratio of specific heat;i=1,2,3.2.2 Gas power calculation Gas power calculation is the foundation of all the dynamic calculation,different vortex profiles with different gas strength calculation method,conjunction type line gas power calculation process is as follows.Role in dynamic vortex disk of gas power and torque as shown in figure 1.Power mainly consist of axes gas powertF,radial gas power rFand tangential gas powerF.Torque make up of overturning MMD-2 第 18 届中国机构与机器科学国际会议 2 momenttM,rotational momentM.Fig.1 the gas power and moment of the orbiting vortex (1)The tangent gas power The gas power imposed on the dynamic vortex disc along the eccentric shaft tangential direction,known as tangential gas power,with notation F.Tangential gas power is a kind of power to stop the crankshaft movement,as well as moving vortex disk rotation and the vortex disc overturning.Figure2 shows that points 1、2、3 are on the surface of the inner wall of the static vortex disk,while points 1、2、3 are on the surface of the outer wall of the dynamic vortex disc.Fig.2 Tangent gas power of the orbiting vortex When vortex surface which was separated by 11、22、33 on the vortex disc works in the position shown,the lower left parts are in the same compression chamber pressure equal everywhere,on the other hand,the upper right parts are in the different chamber where the pressures differ from each other.Owning to the wrap-line symmetry of the dynamic、static vortex disc and the definition of tangential power,the joint tangential power acting on the adjacent sealing chamber must through and perpendicular to the midpoint of the center connection,it is formed by the base circle of dynamic、static vortex disc.After all,the tangential power is caused by different pressure in the adjacent compression chamber.With the movement of the dynamic vortex disc,the gas pressure of the working chamber and the end face area of the cavity will change,so the tangential power along with the crank angle changes.The study object of this paper is a new composite curves wrap and there is no correction on the start line.Due to the requirement of the milling process,the beginning section of wrap and tool round will interfere,making the transition cavity connected to the exhaust chamber too early.And beginning with the exhaust angle,based on different corner moving,we will make separate discussions about the tangential powers suffered on the vortex disc.The exhaust angle is determined by the chapter 3,the tangential gas power on dynamic vortex disc can be divided into two major stages as the corner changes.At this stage,the working chamber formed from the dynamic、static vortex disc are suction chamber,compression chamber and the exhaust chamber.Therefore,the pressure difference between the suction chamber and compression chamber,the compression chamber and the exhaust chamber produced the MMD-2 第 18 届中国机构与机器科学国际会议 3 tangential power.The study object of this paper is a composite curves wrap,thus,the working chamber consist of different curves as the corner at different angular range,resulting in the change of the tangential power area and the total tangential power.Between the exhaust chamber and the compression chamber,the tangential power on the area of exhaust chamber is:11112()()()ioFh llr PP (1)Between the suction chamber and the compression chamber,the tangential power on the area of compression chamber is:22223()()ioFh llr PP (2)The tangential power on the area of suction chamber is:3333()()iosFh llr PP (3)And:P1pressure in the exhaust chamber;P2pressure in the compression chamber;P3pressure in the suction chamber;Pspressure of inlet air;1 il,2il,3il,1ol,2ol,3olare shown in the figure 2。Because of the connection between compression chamber and exhaust chamber,and the new suction chamber has not formed yet,10F,the calculation of 2Fand3Fare (2),(3).The total gas tangential power is sum of every tangential power active in various sections of the cutting area,and its calculation is:123FFFF (4)(2)Radial gas power Radial gas power is imposed along the connection line of base circle in the dynamic、static vortex disc,with notationrF.Radial gas powerrFdriven from the center of dynamic vortex disc to the center of static vortex disc,as for the adjustable eccentric vortex compression,Spindle eccentricity tends to decrease,so that the radial clearance to expand,increase the amount of gas leakage through the radial clearance,at the same time can also cause changes in the friction loss.In the exhaust chamber,the radial gads powers acting on the orbiting vortex is:11122()rFa h PP (5)In the compression chamber,the radial gads powers acting on the orbiting vortex is:21232()rFa h PP (6)Similarly,in the suction chamber,the radial gads powers acting on the orbiting vortex is:3132()rsFa h PP (7)The total radial power is:31112()rrisiFFa h PP (8)(3)Axial gas power The axial gas power is the most important gas power on the vortex of the oil filter vortex vacuum pump,is also one of the main drawback of the vortex vacuum pump,with notationtF.As is shown in figure 3,the axial gas power applied along the eccentric shaft axis direction moving the dynamic vortex disc,moving dynamic vortex disc along the axial deviation to the static vortex disc,increasing the axial clearance,resulting in the increase of radial gas leak,reducing the volumetric efficiency of the vacuum pump.To avoid this,we must calculate the axial power generated by the compressed gas,and try to balance the gas axial power reliably and reasonably.MMD-2 第 18 届中国机构与机器科学国际会议 4 Fig.3 The influence of the power of axis In the figure 3,1 is fixed vortex plate,2 is dynamic vortex disc,and 3 is stand.This study focus on the conjunction lines based on the arc,the vortex of the intermediate compression chamber and the suction chamber constitute incomplete base circle involutes,which can be made up of arcs and circle involutes.In the exhaust chamber,due to the circle involutes profile,the suffered area of axial gas power on dynamic vortex disc is(2.10)and(2.11),that is:S1332211530.6(1.2)322aa (9)3322111970.61.2322aSa (10)We can respectively calculate the axial power area in accordance with the profile of the intermediate compression chamber and the suction chamber at the different corner:In the intermediate compression chamber,and 0A,that is 00.44,we can calculate the axial power area:S2223(1.37)()()(21.37)AAAa 221(0.6)(2)(20.6)(2)BBBa22122()()2sin()BAAARRR r22sin()tan()2AAr 22sintan()cot()2ABr (11)Firstly,AB,that is 0.441.25,we can get the axial area:S2221(0.6)(2)Ba(2)(20.6)BB222121()()sin22BRRr22sincot()BAr (12)Secondly,2B,that is 1.252,we can get the axial area:2S22140.63/a(13)In the suction chamber,Firstly 0A,that is 00.44,we can get the axial area:3S22341.375/a (14)Secondly 2A,that is 0.442,we can get the axial area:3S22334()(5)a2212sin(22)2AArR 2222sin()sin()2AArRr222sin()cos2AArRarcR 233()(2)AAEAa (15)So the axial gas power on the dynamic vortex disc is:As shown in Figure 5,the spindle force as follows:Fig.5 The force of principal axis 3 Spindle power analysis MMD-2 第 18 届中国机构与机器科学国际会议 5 1KnstisiiVFSpV 3312312KKsssVVSpSpS pVV (16)sp is inhale pressure of conjunction profile oil filter vortex vacuum pump,K is Ratio of Specific Heat.(4)The overturning moment Moving vortex disc movement of the crank pin,the point is not the same perpendicular to the axis of the plane,thus causing dynamic vortex disc overturning due to the cut of point to the resultant force F of the gas force and radial gas forces and drive the overturning moment:2212ttMFHFFFhHh (17)Where h the height of the line-vortex;the distance between the h1-vortex disk drive surface.Overturning moment will increase the gap between the static and dynamic vortex disc uneven,hindering one of the main factors of the oil filter vortex vacuum pump mechanical efficiency and volumetric efficiency.(5)Rotation torque When the base circle center as the moving vortex disk drive center,perpendicular to the tangential direction of the crankshaft,the tangential gas force role in the midpoint of the dynamic vortex disc round and static vortex disc base circle center,so have a moving vortex coiled spindle eccentric line rotating torque,that is,the rotation torque,its direction and moving vortex disk rotation in the same direction.The rotation torque will destroy the normal work of the oil filter vortex vacuum pump,and so must be used in the structural design of the anti-rotation mechanism to strictly limit the rotation of the moving vortex disc.Known gas cut to the force applied to the midpoint of the crank for the analysis of the rotation torque point of the tangential force from the crank centerline to the crank pin center line,shown in figure 4.Tangential force to move to the center of the crank pin,crank pin just cut to the force F role,but also a moment the force M role.Fig.4 Transplant chart of tangent force Torque to force Mthe movement vortex coil crank pin center line along the direction of rotation of the vortex disc revolution;it is called the rotation torque by the following equation for:12MrF 12312r FFF (18)4 Conclusions MMD-2 第 18 届中国机构与机器科学国际会议 Vortex disk automatically cut to the force,eccentric reaction forcesF.The size and role in the direction of the moving vortex disc,the total cut of the same forceBrF,F acting perpendicular to the eccentric sleeve hole center line,the role of the outside in the radial direction.Spindle and eccentric face and eccentric hole on the bottom surface has a compression chamber to the introduction of the back pressure p,so the downward force acting on the spindleF214FD p.The reaction force1Z2Z,the cuts from the main and auxiliary bearings1RZ2RZ,radial reaction force,the axial reaction forcestF.Balance the weight of rotary inertia force 21 1m r 22 2m rand moment of inertia.The frictional torque of the main and sub bearing frictional torque1BM 2BM,dynamic vortex disc crank pinBrM.The driving torque from the drive mechanism 12TTBBMMMM.In the design study of vortex profiles,aiming at the restriction of single profile and its ameliorating or parameter optimization presently,the conjunction profiles bearing on arc-length and circle involutes were studied.This first derived conjunction of line of oil filter vortex vacuum pumps cut to the radial and axial gas force,overturning moment and the rotation torque calculation formula based on the conjunction of line oil filter vortex vacuum pumps.Cross slip ring,moving vortex disc,spindle three main components of the stress analysis,the dynamic equilibrium of the oil filter vortex vacuum pump design,strength design and reliability analysis has laid a solid foundation.Aknowledgments This work was supported by National Natural Science Foundation of China(50805149),Chongqing Science and Technology Committee Science and technology Project Foundation(cstc2011ac6086).Chongqing Education Committee Science and technology Project Foundation(kj110710),Chongqing University of Science and Technology Projects(kjtd201019,kjtd11211),CTBU Doctoral Foundation(1152005).References 1Xu S X,Ma G Y.Air-source heat pump coupled with economized vapor injection scroll vacuum pump and ejector:Design and experimental research.Sci China Tech Sci,2010,53(3):782789 2Lee G H.Performance simulation of scroll vacuum pumps.Proceedings of the Institution of Mechanical Engineers,2002,216:169179 3Chen J,Wang,L C,Li S L.Study and profound analysis on general profile theory of scrolls(in Chinese).Chinese J Mech Eng,2006,42(5):1115 4Wang L C,Chen J,Li S L,et al.Conjugate meshing theory of scroll profiles based on functional expression.Chinese J Mech Eng,2007,43(3):5053 5Gagne D P,Nieter J J.Simulating scroll vacuum pump using a generalized conjugate surface approach.Proceedings of the International Vacuum pump Engineering.Pudue,Purdue University,West Laffette,USA,1994,553558 6Christian G.The geometry of the scroll vacuum pump.Siam Rev,2001,43(1):113126 7Blunier B,Cirrincione G,Herv Y,et al.A new analytical and dynamical model of a scroll vacuum pump with experimental validation.Int J Refrig,2009,32(5):874891 8Zheng X Q,Zhang Y J,Yang M Y.Research and development on transonic vacuum pump of high pressure ratio turbocharger for vehicle internal combustion engines.Author brief introduction:Wang Licun,male,born in 1978,Ph.D.,Professor,College of mechanical engineering,Chongqing Technology and Business University.His main research interest:Mechanical design and theory.Published more than 40 papers and more than 30 papers indexed by SCI/EI,3 invention patents.Sci China Tech Sci,2010,53(3):18171824
收藏