注塑模具外文文献翻译-优化设计及仿真塑料注射模具冷却通道 【中文12990字】【PDF+中文WORD】
注塑模具外文文献翻译-优化设计及仿真塑料注射模具冷却通道 【中文12990字】【PDF+中文WORD】,中文12990字,PDF+中文WORD,注塑模具外文文献翻译-优化设计及仿真塑料注射模具冷却通道,【中文12990字】【PDF+中文WORD】,注塑,模具,外文,文献,翻译,优化,设计,仿真,塑料,注射
【中文12000字】 优化设计及仿真Cooling Channels for Plastic Injection Mold
塑料注射模具冷却通道 鸿硕公园春芳党 蔚山大学 韩国1。
简介
Injection molding has been the most popular method for making plastic products due to
注射成型是生产塑料制品的最常用的方法效率高、工艺性。注射成型过程包括三重要的阶段:填充和包装阶段,冷却阶段,和射血期。significant stages: filling and packing stage, cooling stage, and ejection stage. Among these
。。。在这些stages, cooling stage is very important one because it mainly affects the productivity and
阶段中,冷却阶段很重要,因为它主要影响生产率和molding quality. Normally, 70%~80% of the molding cycle is taken up by cooling stage. An
成型质量。通常情况下,70% ~ 80%成型周期是由冷却阶段。一个appropriate cooling channels design can considerably reduce the cooling time and increase
适当的冷却通道的设计可以大大减少冷却时间增加the productivity of the injection molding process. On the other hand, an efficient cooling
注射成型过程中的生产力。另一方面,一个有效的冷却system which achieves a uniform temperature distribution can minimize the undesired
系统实现了均匀的温度分布,可以减少不必要的defects that influence the quality of molded part such as hot spots, sink marks, differential
缺陷影响制件质量等热点,缩痕,微分shrinkage, thermal residual stress, and warpage (Chen et al., 2000; Wang & Young, 2005).
收缩,残余热应力,翘曲(陈等人。,2000;王杨,2005)。Traditionally, mold cooling design is still mainly based on practical knowledge and
传统上,模具冷却设计仍然主要是基于实际的知识designers’ experience. This method is simple and may be efficient in practice; however, this
设计师的经验。此方法简单,在实践中可能是有效的;然而,这approach becomes less feasible when the molded part becomes more complex and a high
方法变得不可行时,成型的部分变得更加复杂和高cooling efficiency is required. This method does not always ensure the optimum design or
冷却效率是必需的。这种方法并不总是保证最佳的设计或appropriate parameters value. Therefore, many researchers have proposed some
适当的参数值。因此,许多研究人员已经提出了一些optimization methods to tackle this problem. Choosing which optimization method was
为了解决这一问题的优化方法。选择优化方法used mainly depends on the experience and subjective choice of each author. Therefore,
用主要靠经验和每个作者的主观选择。因此,finding appropriate optimization techniques for optimizing cooling channels for injection
优化冷却通道的注射寻找合适的优化技术molding are necessary.
成型是必要的。This book chapter aims to show the design optimization method for designing cooling
这本书的目的是展示设计冷却的优化设计方法channels for plastic injection molds. Both conventional straight-drilled cooling channels and
塑料注射模具通道。传统的直钻冷却通道和novel conformal cooling channels are focused. The complication of the heat transfer process
新的共形冷却通道的重点。热传递过程中的并发症in the mold makes the analysis to be difficult when using the analytical method only.
在模具进行分析时,用解析法仅是困难的。Therefore, using numerical simulation tools or combination of analytical and numerical
因此,利用数值仿真工具相结合的分析和数值模拟simulation approach is one of the intelligent choices applied to modern mold cooling
模拟方法是一种智能的选择应用于现代模具冷却design.
设计。The contents of this book chapter are organized as follows. Cooling channels layout and the
这本书的内容如下。冷却通道的布局和foundation of heat transfer process happening in the plastic injection mold are presented
传热过程的注塑模具的基础发生了系统。冷却通道的物理和数学模型也introduced. This section supports the reader the basic governing equations related to the
介绍了。这部分支持读者的基本控制方程有关的www.intechopen.com
www.intechopen.comNew Technologies – Trends, Innovations and Research
新技术–趋势,创新研究20
20cooling process and how to build an appropriate simulation model. Subsequently, the
冷却过程中,如何建立一个合适的仿真模型。随后,该simulation-based optimizations of cooling channels are presented. In this section, the state-
基于仿真的冷却通道的优化方法。在这一部分中,国家—of-art of cooling channels design optimization is reviewed, and then the systematic
艺术的冷却通道的设计优化的研究进行了综述,然后系统procedure of design optimization and optimization methods based on simulation are
程序的优化设计和优化方法的基础上,模拟proposed. Two optimization approaches applied to cooling channels design optimization
提出了。两种优化方法应用于冷却通道的设计优化are suggested: metamodel-based optimization and direct simulation-based optimization.
提出基于元模型的优化和基于仿真的优化。The characteristics, advantages, disadvantages, and the scope of application of each method
的特点,优点,缺点,以及每种方法的适用范围will be analyzed. Finally, two case studies are demonstrated to show the feasibility of the
将分析。最后,两个案例研究表明了该方法的可行性proposed optimization methods.
本文提出的优化方法。
2。冷却通道的布局
2.1 Mold cooling system overview
2.1 模具冷却系统概述
Mold cooling process accounts for more than two-thirds of the total cycle time in the
超过三分之二的总周期时间的模具冷却过程的帐户production of injection molded thermoplastic parts. An efficient cooling circuit design
生产的注射成型的热塑性塑料零件。一个有效的冷却回路设计reduces the cooling time, and in turn, increases overall productivity of the molding process.
减少冷却时间,反过来,增加整体生产力的成型工艺。Moreover, uniform cooling improves part’s quality by reducing residual stresses and
此外,均匀的冷却,减少残余应力,提高了零件的质量maintaining dimensional accuracy and stability (see Fig. 1).
保持尺寸精度和稳定性(见图1)。图1。适当的冷却设计与差的冷却设计(鞋匠,2006)
磨具冷却系统通常包括以下几个项目:A mold cooling system typically consists of the following items:
温度控制单元- Pump
泵- Hoses
-软管- Supply and collection manifolds
供应和回收装置- Cooling channels in the mold
在模具的冷却通道The mold itself can be considered as a heat exchanger, in which the heat from the hot
模具本身可以被视为一个热交换器,在从热polymer melt is taken away by the circulating coolant.
聚合物熔体的循环冷却液带走。Figures 2 illustrates the components of a typical cooling system.
图2说明了一个典型的冷却系统部件。图2。在注射成型中的一个典型的冷却系统
2.2 Conventional straight-drilled cooling channels
2.2传统的直钻冷却通道
The common types of straight-drilled cooling channels are parallel and series.
直的常见类型钻孔冷却通道并联和串联。
2.2.1 Parallel cooling channels
2.2.1并联冷却通道
Parallel cooling channels are drilled straight channels that the coolant flows from a supply manifold to a collection manifold as shown in Fig. 3c. Due to the flow characteristics of the parallel cooling channels, the flow rate along various cooling channels may be different, depending on the flow resistance of each individual cooling channel. This varying of the flow rate, in turn, causes the heat transfer efficiency of the cooling channels to vary from one to another. As a result, cooling of the mold may not be uniform with a parallel coolingchannel configuration.
并联冷却通道钻直通道,从供给歧管到集合歧管如图3c示冷却剂流动。由于该并联冷却通道的流动特性,以及不同的冷却通道的流量可能会有所不同,取决于每个单独的冷却通道的流动阻力。这不同的流量,反过来,导致的冷却通道的传热效率的变化从一个到另一个。作为一个结果,对模具冷却不可能与一个平行的腔结构的统一。2.2.2 Serial cooling channels
2.2.2系列冷却通道Cooling channels that are connected in a single loop from the coolant inlet to its outlet are
冷却通道连接从冷却液入口到出口的一个环called serial cooling channels (see Fig. 3b). This type of cooling channel network is the most
称为连续冷却通道(图3b)。这种类型的冷却通道网络是最commonly used in practice. By design, if the cooling channels are uniform in size, the
在实践中常用的。通过设计,如果冷却通道的尺寸是均匀的coolant can maintain its turbulent flow rate through its entire length. Turbulent flow enables
冷却液可能通过其整个长度保持其流动率。湍流使the heat to be transferred more effectively. For large molds, more than one serial cooling
热被转移更有效。对于大型模具,一个以上的连续冷却channel may be required to assure a uniform coolant temperature and thus uniform mold
通道可能需要保证均匀的冷却液温度,从而均匀的模cooling.
冷却
图3。传统的直的冷却通道
2.3 Conformal cooling channels
2.3随形冷却水道
(c) Straight parallel cooling channels
(C)平行的冷却通道
To obtain a uniform cooling, the cooling channels should conform to the surface of the mold
为了获得均匀的冷却,冷却通道应符合模具的表面cavity that is called conformal cooling channels. The implementation of this new kind of
被称为随形冷却水道空腔。这种新的实现cooling channels for the plastic parts with curved surfaces or free-form surfaces is based on
对于曲面或空间自由曲面塑件的冷却通道的基础上the development of solid free-form fabrication (SFF) technology. On the other hand,
固体空白的制造(SFF)技术的发展。另一方面,conformal cooing channels can also be made by U-shape milled groove using CNC milling machine (Sun et al., 2004).
共形冷却通道也可由U型数控铣床铣槽(Sun等人。,2004)。图4 一种共形冷却通道
布局The conformal cooling channels are different from straight-drilled conventional cooling
随形冷却通道不同于直钻常规冷却channels. In conventional cooling channels, the free-form surface of mold cavity is
渠道。在传统的冷却通道,模具型腔的自由曲面surrounded by straight cooling lines machined by drilling method. It is clear that the
周围的冷却系的钻孔方法加工的直。很显然distance from the cooling lines and mold cavity surface varies and results in uneven cooling
从冷却系和模具型腔表面的变化,结果在不均匀冷却距离in molded part. On the contrary, for the conformal cooling channels, the cooling paths
在成型的部分。相反,对于共形冷却通道,冷却路径match the mold cavity surface well by keeping a nearly constant distance between cooling
与模具型腔表面的冷却间保持几乎恒定的距离paths and mold cavity surface (see Fig. 4). It was reported that this kind of cooling channels
路径和模具型腔表面(见图4)。据报道,这种冷却通道gives better even temperature distribution in the molded part than the conventional one.
提供更好的温度均匀分布在成型的部分比常规。3。物理和数学建模的冷却通道
In the physical sense, cooling process in injection molding is a complex heat transfer problem.
在身体上,在注射成型冷却过程是一个复杂的传热问题。To simplify the mathematical model, some of the assumptions are applied (Park & Kwon,
为了简化的数学模型,一些假设的应用(Park & Kwon,1998; Lin, 2002). The objective of mold cooling analysis is to find the temperature distribution
1998;林,2002)。模具冷却分析的目的是找到的温度分布in the molded part and mold cavity surface during cooling stage. When the molding process
在注塑产品和模具型腔表面的冷却过程。当成型工艺reaches the steady-state after several cycles, the average temperature of the mold is constant
达到稳态后几个周期,模具的平均温度是恒定的even though the true temperature fluctuates periodically during the molding process because
即使真实温度的周期性波动在成型过程中由于of the cyclic interaction between the hot plastic and the cold mold. For the convenience and
的热塑性和冷模之间的循环互动。为方便efficiency in computation, cycle-averaged temperature approach is used for mold region and
计算效率,周期平均温度的方法是用于模具区transition analysis is applied to the molded part (Park & Kwon, 1998; Lin, 2002; Rännar, 2008).
过渡分析应用于模制部分(公园、跆拳道,1998;林,2002;rännar,2008)。The general heat conduction involving transition heat transfer problem is governed by the
涉及过渡传热问题的一般热传导是由partial differential equation. The cycle-averaged temperature distribution can be represented
偏微分方程。周期平均温度分布可以表示by the steady-state Laplace heat conduction equation. The coupling of cycle-averaged and one-
稳态热传导方程的拉普拉斯。的平均周期和一个耦合—dimensional transient approach was applied since it is computationally efficient and
三维瞬态的方法是计算效率和sufficiently accurate for mold design purpose (Qiao, 2006; Kennedy, 2008). Heat transfer in the
足够精确的模具设计的目的(桥,2006;甘乃迪,2008)。在传热mold is treated as cycle-averaged steady state, and 3D FEM simulation was used for analyzing
模具作为周期平均的稳定状态,和三维有限元模拟分析the temperature distribution. The cycle-averaged approach is applied because after a certain
温度分布。周期平均的方法因为某种后transient period from the beginning of the molding operation, the steady-state cyclic heat
过渡期从成型操作开始,稳态循环热transfer within the mold is achieved. The fluctuating component of the mold temperature is
实现了在模具转移。模具的温度脉动分量small compared to the cycle-averaged component so that cycle-averaged temperature
比较小的平均周期分量,周期平均温度approach is computationally more efficient than periodic transition analysis (Zhou & Li, 2005).
方法是计算比周期过渡分析更有效(Zhou & Li,2005)。Heat transfer in polymer (molding) is considered as transient process. The temperature
在聚合物的热传递(成型)被认为是瞬态过程。温度distribution in the molding is modeled by following equation:
在成型的分布是仿照由以下方程:
偏微分方程(1)可以通过有限差分方法方便地求解。Due to the nature of thermal contact resistance between polymer and mold, a convective
由于聚合物和模具之间的接触热阻的性质,对流boundary condition (Kazmer, 2007) was applied instead of isothermal boundary condition.
边界条件(卡兹默,2007)代替等温边界条件的应用。这一边界条件表示模内聚合物界面传热性质better than isothermal boundary condition.
比等温边界条件。
在TPS和TM成型零件表面温度和模具温度,分别;KP是聚合物的热导率。The inversion of the heat transfer coefficient hc is called thermal contact resistance (TCR). It is reported that the TCR between the polymer and the mold is not negligible. TCR is the function of a gap, roughness of contact surface, time, and process parameters. The values of TCR are very different (Yu et al., 1990; C-MOLD, 1997; Delaunay et al., 2000; Sridhar & Narh, 2000; Le Goff et al., 2005; Dawson et al., 2008; Hioe et al., 2008; Smith et al., 2008), and they are often obtained by experiment.
的传热系数HC反演叫做热接触电阻(TCR)。据悉,TCR与聚合物之间的模具是不可忽略的。TCR的间隙的作用,接触表面的粗糙度,时间,和工艺参数。的TCR值有很大的不同(Yu等人。,1990;C-MOLD,1997;Delaunay等人。,2000;斯里达尔和NarH,2000;勒高夫等人。,2005;道森等人。,2008;hioe等人。,2008;Smith等人。,2008),和他们通常是通过实验获得。The heat flux across the mold-polymer interface is expressed as follows.
在模具的聚合物的界面热通量表示如下。
其中N是表面法向量。The cycle-averaged heat flux is calculated by the equation:
周期的平均热通量是通过公式计算:
所需的冷却时间TC计算如下(Menges等人,2001;饶&舒马赫,2004).
2004。)
聚合物的热扩散系数An example solution of the system of Eq. (1) to (5) for a specific polymer and a given process
方程系统的一个例子的解决方案(1)至(5)为一个特定的聚合物与一个给定的过程parameters is depicted in Fig. 6.
参数,如图6所示。图6。典型的温度分布和一个给定的通过有限成型热通量difference method When the heat balance is established, the heat flux supplied to the mold and the heat flux
差分法建立了热平衡时,向模具和热通量热通量removed from the mold must be in equilibrium. Figure 7 shows the sketch of configuration of
从模具中取出,必须平衡。图7显示了配置示意图cooling system and heat flows in an injection mold. The heat balance is expressed by equation.
在注射模冷却系统和热流量。热量平衡方程表示的。
其中M Q&,C和E Q Q&&从熔体冷却液的热通量,热通量交换and environment respectively.
分别与环境。
图7。热流量的物理建模和冷却系统的示意图
The heat from the molten polymer is taken away by the coolant moving through the cooling
从熔融的聚合物的热的冷却液流经冷却带走channels and by the environment around the mold’s exterior surfaces. The heat exchanges
渠道和模具的外表面周围的环境。热交换with the coolant is taken place by force convection, and the heat exchanges with
随着冷却液通过强制对流发生,和热交换environment is transported by convection and radiation at side faces of the mold and heat
环境是通过在模具和热侧面对流和辐射传输conduction into machine platens. In application, the mold exterior faces can be treated as
传导到机压板。在实际应用中,模具的外表面可以被视为adiabatic because the heat lost through these faces is less than 5% (Park & Kwon, 1998; Zhou
因为通过这面绝热损失的热量小于5%(公园、跆拳道,1998周& Li, 2005). Therefore, the heat exchange can be considered as solely the heat exchange
李,2005)。因此,热交换可以看作是纯粹的热交换between the hot polymer and the coolant. The equation of energy balance is simplified by
聚合物和冷却剂之间的热。能量平衡方程的简化neglecting the heat loss to the surrounding environment.
忽略热损失到周围的环境。
热通量从熔融塑料进入冷却剂可以计算为(Rao等人。,2002)
从在时间Tc达冷却剂改变模具的热通量(Park & Kwon,1998):
1998。
事实上,这个热通量转移到冷却液应包括总周期时间filling time tf, cooling time tc and mold opening time t0. By comparing the analysis results obtained by the analytical method using the formula (9) and the analysis result obtained by
填充时间,冷却时间Tc和开模时间t0。通过比较用公式的分析方法得到的分析结果(9)和分析得到的结果commercial flow simulation software, the formula (9) under-estimates the heat flux value. On
商业流程模拟软件,公式(9)下的热通量的估计值。在the contrary, if, tc in (9) is replaced by the sum of tf, tc and to, the formula (9) over-estimates the
相反,如果,TC(9)是以TF和更换,TC和,公式(9)估计heat flux from the mold exchanges with coolant. The reason is that the mold temperature at
热通量从模具的交流与冷却。原因是,模具温度the beginning of filling stage and mold opening stage is lower than others within a molding
灌浆期和开模阶段开始比别人在成型cycle. The under-estimation or over-estimation is considerable when the filing time and mold
周期。在估计或估计是相当大的,申请时间和模具opening time is not a small portion compared to the cooling time, especially for the large part
开放时间是一个不小的部分相比,冷却时间,特别是对于大部分with small thickness (Park & Dang, 2010). For this reason, the formula (9) is adjusted
厚度小(公园、荡,2010)。因此,公式(9)调整approximately based on the investigation of the mold wall temperature of rectangular flat
约基于矩形平板模壁温度的研究parts by using both practical analytical model and numerical simulation.
部分用实用解析模型和数值模拟。
冷却通道的位置对热传导的影响可以考虑account by applying shape factor Se (Holman, 2002)
利用形状因子SE帐户(Holman,2002)
水的传热系数的计算(饶&舒马赫,2004):
在雷诺兹数
在板的形式的塑件冷却时间的计算(Menges等人,2001;Rao & Schumacher, 2004):
饶&舒马赫,2004):
从公式(14),可以看出,冷却时间只取决于热properties of a plastic, part thickness, and process conditions. It does not directly depend on
一种塑料,部分厚度的特性,以及工艺条件。它不直接依赖于cooling channels configuration. However, cooling channels’ configuration influences the
冷却通道的配置。然而,冷却通道配置的影响mold wall temperature TW , so it indirectly influences the cooling time.
模壁温度Tw,从而间接地影响冷却时间。By combining equations from (7) to (14), one can derive the following equation:
通过结合方程从(7)至(14),我们可以得到以下方程:
在数学上,与预设的TM,TE,TW,预定义的TF和热性能,和其他人of material, equation (15) presents the relation between cooling time tc and the variables
材料,方程(15)提出了冷却时间Tc和变量之间的关系related to cooling channels configuration including pitch x, depth y and diameter d. In
冷却通道的配置包括音高与X,Y和直径D的深度reality, the mold wall temperature TW is established by the cooling channels configuration
现实中,模壁温度Tw的冷却通道建立的结构and predefined parameters TM, TE, tf, to, and thermal properties of material in equation (15).
与预定义的参数,TM,TE,TF,,,方程(15)的材料的热性能。The value of TW , in turn, results in the cooling time calculated by the formula (14).
TW,反过来的价值,在冷却时间的计算公式的计算结果(14)。4. Simulation-based optimization of cooling channels
4。基于模拟的冷却通道的优化4.1 Cooling system design and optimization: The state-of-the-art
4.1冷却系统的设计与优化:先进的For many years, the importance of cooling stage in injection molding has drawn a great
多年来,在注射成型中的冷却阶段的重要性已经引起了极大的attention from researchers and mold designers. They have been struggling for the
从研究人员和模具设计者的关注。他们一直在争取improvement of the cooling system in the plastic injection mold. This field of study can be
在塑料注射模具冷却系统的改进。这一领域的研究可以divided into two groups:
分成两组:• Optimizing conventional cooling channels (straight-drilled cooling lines).
•优化传统的冷却通道(直钻冷却线)。• Finding new architecture for injection mold cooling channels (conformal cooling
•寻找新的架构的注塑模具的冷却通道(形冷却channels).
通道)。第一组的重点放在如何优化的冷却系统的配置shape, size, and location of cooling lines (Tang et al., 1997; Park & Kwon, 1998; Lin, 2002; Rao
的形状,大小,和冷却线的位置(唐等人。,1997;公园和跆拳道,1998;林,2002;饶et al., 2002; Lam et al., 2004; Qiao, 2005; Li et al., 2009; Zhou et al., 2009; Hassan et al., 2010).
等人。,2002;林等人。,2004;桥,2005;Li等人。,2009;周等人。,2009;哈桑等人,2010)。These studies used some of methods from semi-analytical method to finite difference,
这些研究使用的半解析法和有限差分方法,boundary element method (BEM), and finite element method (FEM). Rao N. (Rao et al., 2002)
边界元法(BEM),和有限元法(FEM)。饶国(Rao等人。,2002)proposed the optimization of cooling systems in injection mold by using an applicable
提出了在注射模冷却系统的优化通过使用适用analytical model based on 2D heat transfer equations. Most studies mainly focus on the
基于二维热传导方程的解析模型。大多数的研究主要集中在numerical methods. Park and Kwon (Park & Kwon, 1998) proposed the optimization method
数值方法。公园和Kwon(公园、跆拳道,1998)提出的优化方法for cooling system design in injection molding process by applying design sensitive method.
运用设计敏感的方法在注射成型过程中冷却系统的设计。The heat transfer was treated as 2D problem. Boundary element method is preferred to solve
传热被视为二维问题。边界元法是首选的解决the heat transfer problem in mold cooling design (Qiao, 2005; Zhou et al., 2009). BEM is
在设计模具冷却的传热问题(桥,2005;周等人。,2009)。边界元法effective for calculating heat transfer in the mold because: (a) the discretization associated with
有效的模具中的传热计算,因为:(一)与离散化BEM does not extend to the interior region of the mold that there is no need for mesh
边界元法不适用于模具的内部区域,不需要网格generation when the cooling channels are rearranged, (b) BEM method reduces the input data
代当冷却通道的排列,(b)边界元方法降低输入数据due to the reduction of total nodes so that the computation cost is reduced in comparison to
由于总节点的减少使计算成本相比,减少了finite element method. Although the BEM can extend to 3D application as the new feature of
有限元法。虽然它能扩展到三维应用的新特点most of commercial injection molding software, these works are mainly based on 2D case
大多数商业注塑成型的软件,这些作品主要是基于二维的情形studies that are not always practical. Moreover, most of case studies are simple.
这并不总是实用研究。此外,大多数案例都是简单的。For 3D analysis in heat transfer in injection mold, 3D simulation based on professional or
三维分析在注塑模具中的传热,基于职业或三维仿真commercial software is the common approach. Nowadays, commercial simulation software
商业软件是常用的方法。如今,商业仿真软件can help the designer to calculate the temperature distribution and cooling time.
能帮助设计者计算温度分布和冷却时间。Nevertheless, it is only the simulation tools, and these tools themselves are often confined in
然而,这仅仅是模拟工具,这些工具往往局限于a single simulation. The optimization task n
收藏