(课堂设计)高中数学 第三章 不等式章末检测 新人教A版必修5
![(课堂设计)高中数学 第三章 不等式章末检测 新人教A版必修5_第1页](https://file7.zhuangpeitu.com/fileroot7/2024-4/13/0e125d02-94da-4bb6-9213-3c943d42084a/0e125d02-94da-4bb6-9213-3c943d42084a1.gif)
![(课堂设计)高中数学 第三章 不等式章末检测 新人教A版必修5_第2页](/images/s.gif)
![(课堂设计)高中数学 第三章 不等式章末检测 新人教A版必修5_第3页](/images/s.gif)
《(课堂设计)高中数学 第三章 不等式章末检测 新人教A版必修5》由会员分享,可在线阅读,更多相关《(课堂设计)高中数学 第三章 不等式章末检测 新人教A版必修5(9页珍藏版)》请在装配图网上搜索。
1、第三章 不等式 章末检测 (时间:120分钟 满分:150分) 一、选择题(本大题共12小题,每小题5分,共60分) 1.原点和点(1,1)在直线x+y=a两侧,则a的取值范围是( ) A.a<0或a>2 B.0a>-a2>-a B.-a>a2>-a2>a C.-a>a2>a>-a2 D.a2>-a>a>-a2 3.不等式<的解集是( ) A.(-∞,2) B.(2,+∞) C.(0,2) D.(-∞
2、,0)∪(2,+∞)
4.设02
5.在R上定义运算⊗:x⊗y=x(1-y),若不等式(x-a)⊗(x+a)<1对任意实数x成立,则( )
A.-1b,则下列不等式成立的个数为( )
①<;②a3>b3;③>;④2a>2b;⑤>1;⑥ac2
3、,则lg(a-d)>lg(b-c). A.0个 B.1个 C.2个 D.3个 7.若实数x,y满足条件目标函数z=2x-y,则( ) A.zmax= B.zmax=-1 C.zmax=2 D.zmin=0 8.下列不等式:①a2+1>2a;②|x+|≥2;③≤2 (a,b为正实数);④x2+≥1.其中正确的个数是( ) A.0 B.1 C.2 D.3 9.设x,y∈R,a>1,b>1,若ax=by=3,a+b=2,则+的最大值为( ) A.2 B. C.1 D. 10
4、.若正数a,b满足ab-(a+b)=1,则a+b的最小值为( )
A.2+2 B.2-2
C.+2 D.-2
11.若不等式组的整数解只有-2,则k的取值范围是( )
A.-3≤k<2 B.-3 5、小题5分,共20分)
13.不等式<0的解集是________.
14.已知实数x,y满足则的范围为________.
15.函数f(x)=(2-a2)x+a在区间[0,1]上恒为正,则实数a的取值范围是________.
16.一批货物随17列货车从A市以v千米/小时匀速直达B市,已知两地铁路线长400千米,为了安全,两列货车的间距不得小于2千米,那么这批货物全部运到B市,最快需要________小时.
三、解答题(本大题共6小题,共70分)
17.(10分)已知全集U=R,A=,B={x|3x2-4x+1>0},求∁U(A∩B).
6、
18.(12分)解关于x的不等式x2-(a+a2)x+a3>0.
19.(12分)已知不等式kx2-2x+6k<0 (k≠0).
(1)若不等式的解集为{x|x<-3或x>-2},求k的值;
(2)若不等式的解集为∅,求k的取值范围.
7、
20.(12分)某企业生产甲、乙两种产品,已知生产每吨甲产品要用A原料3吨、B原料2吨;生产每吨乙产品要用A原料1吨、B原料3吨.销售每吨甲产品可获得利润5万元、每吨乙产品可获得利润3万元,该企业在一个生产周期内消耗A原料不超过13吨、B原料不超过18吨,那么该企业可获得的最大利润是多少?
21.(12分)某房地产开发公司计划在一楼区内建造一个长方形公园ABCD,公园由长方形的休闲区A1B1C1D1和环公园人行道(阴影部分)组成.已知休闲区A1B1C1D1的面积 8、为4 000平方米,人行道的宽分别为4米和10米(如图所示).
(1)若设休闲区的长和宽的比=x,求公园ABCD所占面积S关于x的函数S(x)的解析式;
(2)要使公园所占面积最小,休闲区A1B1C1D1的长和宽该如何设计?
22.(12分)某营养学家指出,成人良好的日常饮食应该至少提供0.075 kg的碳水化合物,0.06 kg的蛋白质,0.06 kg的脂肪.1 kg食物A含有0.105 kg碳水化合物,0.07 kg蛋白质,0.14 kg脂肪,花费28元 9、.而1 kg食物B含有0.105 kg碳水化合物,0.14 kg蛋白质,0.07 kg脂肪,花费21元.为了满足营养专家指出的日常饮食要求,同时使花费最低,需要同时食用食物A和食物B多少千克?
第三章 章末检测
1.B 2.B 3.D 4.C 5.C 6.C 7.C 8.C
9.C [因为a>1,b>1,ax=by=3,a+b=2,
所以x=loga3,y=logb3.
+=+
=log3a+log3b=log3ab
≤log32=log32=1,
当且仅当a=b时,等号成立.]
10.A [ 10、∵a+b=ab-1≤-1,
∴(a+b)2-4(a+b)-4≥0,
又∵a、b均为正数,
∴a+b≥2+2.]
11.A [x2-x-2>0⇔x<-1或x>2.
2x2+(5+2k)x+5k<0
⇔(2x+5)(x+k)<0.
在数轴上考察它们的交集可得-3≤k<2.]
12.B [由题意知a2=(1+2b)(1-2b),
∴a2+4b2=1≥2=4|ab|,
∴|ab|≤,
∴≤≤
=≤.
当且仅当|a|=2|b|时取等号.]
13.(-∞,1)∪(6,+∞)
14.[0,1]
15.(0,2)
16.8
解析 这批货物从A市全部运到B市的时间为t,则t 11、==+
≥2 =8(小时),
当且仅当=,
即v=100时等号成立,此时t=8小时.
17.解 A=
={x|3x2-4x-4<0}
=,
B={x|3x2-4x+1>0}
=,
A∩B=,
∴∁U(A∩B)=
.
18.解 将不等式x2-(a+a2)x+a3>0变形为
(x-a)(x-a2)>0.
∵a2-a=a(a-1).
∴当a<0或a>1时,a 13、).
即该企业可获得的最大利润为27万元.
21.解 (1)设休闲区的宽B1C1为a米,则其长A1B1为ax米,
∴a2x=4 000⇒a=,
∴S=(a+8)(ax+20)
=a2x+(8x+20)a+160
=4 000+(8x+20)·+160
=80+4 160(x>1).
(2)S≥1 600+4 160=5 760(当且仅当2=⇒x=2.5),
即当x=2.5时,公园所占面积最小.
此时a=40,ax=100,即休闲区A1B1C1D1的长为100米,宽为40米.
22.解 据已知数据列出下表:
食物/kg
碳水化合物/kg
蛋白质/kg
脂肪/kg
A
0.105
0.07
0.14
B
0.105
0.14
0.07
设每天食用x kg食物A,y kg食物B,总成本为z.
那么①
目标函数为z=28x+21y
二元一次不等式组①等价于
②
作出二元一次不等式组②表示的平面区域,如图即可行域.
由z=28x+21y,它可以变为y=-x+由图中可行域可以看出,当直线28x+21y=z经过点B时,截距最小,此时z亦最小.
解方程组
得
∴B点的坐标为.
∴zmin=28×+21×=16.
由此可以知,每天食用食物A约 kg,食用食物B约 kg,可使花费最少为16元.
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年水电工程运行维护管理合同示范文本.docx
- 2025年工程勘测设计合同模板.docx
- 2025年区域产品销售代理合同.docx
- 2025年经销商授权合同样本.docx
- 2025年员工住房资金借贷合同.docx
- 2025年轻钢建筑施工合同示例.docx
- 2025年网络推广托管合同.docx
- 2025年简明个人借款正式合同范例.docx
- 2025年房产按揭贷款合同范例.docx
- 2025年技术合同争议调解.docx
- 2025年电子版城市住宅租赁合同范本.docx
- 2025年简易转让合同协议书样本.docx
- 2025年投资顾问服务合同实例.docx
- 2025年经销合同模板.docx
- 2025年工业项目设计合同样本.docx