状态空间模型的线性变换和约旦规范形
《状态空间模型的线性变换和约旦规范形》由会员分享,可在线阅读,更多相关《状态空间模型的线性变换和约旦规范形(79页珍藏版)》请在装配图网上搜索。
1、单击此处编辑母版标题样式,,,*,单击此处编辑母版文本样式,,第二级,,第三级,,第四级,,第五级,,目录(1/1),目 录,,,概述,,2.1,状态和状态空间模型,,2.2,根据系统机理建立状态空间模型,,2.3,根据系统的输入输出关系建立状态空间模型,,2.4,状态空间模型的线性变换和约旦规范型,,2.5,传递函数阵,,2.6,线性离散系统的状态空间描述,,2.7 Matlab,问题,,本章小结,,状态空间模型的线性变换和约旦规范形,(1,/8),2.4,状态空间模型的线性变换和约旦规范形,,,从上一节的讨论可知,同一个系统的状态空间模型,即使其维数相同,但其具体结构和系数矩阵也是多种多
2、样的,,,,如系统矩阵,A,可以为对角线矩阵的或者约旦矩阵的,,,,也可以为其他形式的。,,即,,,状态空间模型不具有唯一性,。,,状态空间模型的线性变换和约旦规范形,(,2/8),为何同一个系统具有不同的状态空间模型?,,原因,: 状态变量的不同选择,,这就产生了一个问题:,,各种不同选择的状态变量之间,以及它们所对应的状态空间模型之间的关系如何?,,状态空间模型的线性变换和约旦规范形,(,3/8),此外,在控制系统的分析和设计中,某些特殊的系统数学模型对讨论问题相对简单得多,如前面建立的对角线规范形的和约旦规范形。,,于是自然会提出如下问题:,,如何把一般形式的状态空间模型变换成特定形式
3、的状态空间模型,以降低系统的分析问题和设计问题的难度。,,解决上述两个问题,就需引入状态空间的线性变换。,,什么是状态空间的线性变换?,如何理解?,,本章关键喔!,,状态空间模型的线性变换和约旦规范形,(,4/8),状态变量是一组实变量,它们所组成的状态空间为一个实线性空间。,,由线性代数知识可知,线性空间中,随着表征空间坐标的,基底的选取的不同,,空间中的点关于各种基底的,坐标亦不同,。,,这些基底之间的关系为进行了一次坐标变换,而空间中的点的,坐标则相当于作了一次相似变换。,,如,在如右图所示的平面直角坐标系中,,A,点在两个坐标系下的坐标存在如下变化关系(其中,P,为非可逆的变换矩阵),
4、,状态空间模型的线性变换和约旦规范形,(,5/8),n,维空间中的旋转变换、极坐标变换,线性空间中的相似变换,都属于空间变换。,,其中旋转变换和相似变换还属于线性变换。,,状态空间中由于状态变量的不同选择类似于线性空间中的坐标架的不同选择,,,同一个系统不同选择状态变量组之间存在类似于线性空间不同坐标架之间的线性变换,,,因此我们将在状态空间中坐标变换称为状态空间的线性变换。,,状态空间模型的线性变换和约旦规范形,(,6/8),引入坐标变换和状态空间线性变换等概念,实际上就回答了上述两个问题:,,1.,不同选取状态变量之间存在一个,坐标变换,,其相应的状态空间模型之间也存在一个相应的,相似变换
5、,。,,2.,既然可以对状态变量和状态空间模型进行线性变换,则在一定条件下应可以将一般形式的状态空间模型变换成某种特殊的状态空间模型。,,状态空间模型的线性变换和约旦规范形,(,7/8),本节主要讨论状态空间的线性变换,以及如何将系统状态空间描述变为其约旦规范形。,,本章关键问题:,,1.,线性变换的几何及空间意义,建立空间想象力,,2.,如何作系统线性变换,,3.,系统的对角规范形和约旦规范形描述,,4.,代数重数、几何重数与约旦矩阵,,5.,如何求矩阵的广义特征向量,建立空间概念,可是学好控制理论的关键喔,,状态空间模型的线性变换和约旦规范形,(,8/8),主要内容为,:,,状态空间的线性
6、变换,,系统特征值的不变性与系统的不变量,,化状态方程为对角线规范形,,化状态方程为约旦规范形,,状态空间的线性变换(1/,2),2.4.1,状态空间的线性变换,,,对于一个,n,阶,动态系统,可通过选择适当的,n,个状态变量以建立状态空间模型来描述它。,,但是,这,n,个状态变量的选择却不是唯一的。,,这一点可利用线性代数中的基底不唯一来理解。,,一个,n,维线性独立的状态变量向量,在,n,维状态空间中构成一个坐标系,即相当于空间中的一个基底。,,根据线性代数知识,在这个空间中还存在另外的坐标系,且与原坐标系存在一个线性变换关系。,,状态空间的线性变换(,2/2),下面分别讨论:,,状态空间
7、的线性变换,,状态空间模型的线性变换,,上述状态变量向量,x,与,,间的变换,称为状态的线性变换。,由线性代数知识可知,它们之间必有如下变换关系,状态空间的线性变换(1/1),1.,状态空间的线性变换,,,设描述同一个,线性,状态空间的两个,n,维的状态变量向量分别为,其中,P,为,n,,n,维的非奇异变换矩阵。,值得指出的是:,变换矩阵,P,只有为非奇异的,才能使,x,和,,间的变换关系是等价的、唯一的和可逆的。,,两种表达式式之间存在什么关系?,状态空间的线性变换(1,/14),2,.状态空间模型的线性变换,设在状态变量,x,和,,下,系统状态空间模型分别为,将变换关系,x,=,P,,代
8、入,,(,A,,,B,,,C,,,D,),的,状态方程中有,,状态空间的线性变换(,2/14),由于变换矩阵,P,非奇异,因此有,则有,应该注意的是,系统的初始条件也必须作相应的变换,即,将上式与状态空间模型,,比较,则线性系统,(,A,,,B,,,C,,,D,),在线性变换矩阵,P,下的各矩阵具有如下对应关系,其中,t,0,为系统运动的初始时刻。,,状态空间的线性变换(,12/14)—,例,2-5,下面介绍状态空间模型变换的算例。,,,例,2-5,,试将以下状态空间模型,作变换矩阵为下式所示的线性变换,,状态空间的线性变换(1,3/14),解,,线性变换,P,的逆矩阵为,因此,有,,状态
9、空间的线性变换(1,4/14),故系统在新的状态变量下的状态空间模型为,值得指出的是,状态空间的线性变换只是对状态变量作变换,对系统的输入和输出未作变换,因此,,系统的输入输出间的动态和静态关系对状态变换保持不变,。,,系统特征值的不变性与系统的不变量,(,1/2),2.4.2,系统特征值的不变性与系统的不变量,,,由前面的讨论可知,当选择不同的状态变量,则获得不同的状态空间模型描述。,,实际上,状态空间模型只是系统在不同的状态变量选择下对系统的一种描述,它随状态变量选择的不同而不同,并不具有唯一性和不变性。,,那么,到底系统在状态空间中有哪些描述,哪些性质是不变的,是不随状态变量的选取不同而
10、变化的?,,,线性定常系统的特征结构由特征值和特征向量所表征。,,系统的特征结构对系统运动的特性和行为具有重要的影响,,,决定了系统的基本特性。,,系统特征值的不变性与系统的不变量,(,2/2),下面我们将讨论系统经状态线性变换后,,,其特征值不变,,,亦即状态线性变换不改变系统的基本特性。,,系统矩阵的特征值是一种描述系统本质特征的,并具有唯一性的不变量,即不随状态变量的选取不同而变化的不变量,它在系统分析和综合上起着重要的作用。,,下面将分别讨论:,,系统的特征值和特征向量,,系统,特征值的不变性,,特征向量的计算,,广义特征向量和特征向量链,难点喔!,重点喔,难点喔!,重点喔,,系统的特
11、征值和特征向量(,1/,4),1,.,,系统的特征值和特征向量,,,状态空间的线性变换,只是改变了描述系统的角度(或说坐标系),系统的本质特征应保持不变。,,对于线性定常系统来说,系统的特征值(极点)决定了系统的基本特性。,,特征值应是系统不变的本质特征之一。,,系统经状态线性变换后,其本质特征之一的特征值应保持不变,亦即状态线性变换不改变系统的基本特性。,,下面先讨论矩阵特征值和特征向量的定义。,,系统的特征值和特征向量(,2/,4)—,特征值和特征向量定义,定义,2-2,,设,v,是,n,维非零向量,,A,是,n,,n,矩阵。若方程组,,Av,=,,v,,成立,则称,,为矩阵,A,
12、的,特征值,,非零向量,v,为,,所对应的矩阵,A,的,特征向量,。,,,将上述特征值的定义式写为,,(,,I,-,A,),v,=0,,其中,I,为,n,×,n,的单位矩阵。,,因此,,,由代数方程论可知,,,上式有非零特征向量,v,的解的充要条件为,,|,,I,-,A,|=0,,并称上式为矩阵,A,的,特征方程,,,而,|,,I,-,A,|,为,A,的,特征多项式,。,,系统的特征值和特征向量(,3/4)—,特征值和特征向量定义,将,|,,I,-,A,|,展开,可得,,|,,I,-,A,|=,,n,+,a,1,,n,-1,+…+,a,n,-1,+,a,n,=0,,其中,a
13、,i,(,i,=1,2,…,,n,),称为特征多项式的系数。,,因此,,,n,,n,维的矩阵,A,的特征多项式为,n,阶多项式。,,若矩阵,A,为实矩阵,则对应的特征方程为一实系数代数方程,共有,n,个根。,,这,n,个根或为实数,或为成对出现的共轭复数。,,求解矩阵特征值的方法即为求解矩阵,A,的特征方程。,,n,阶的特征方程的,n,个根,,1,,,,2,,…,,,n,即为矩阵,A,的,n,个特征值。,,在得到特征值,,i,后,,,由式,(2-46),或式,(2-47),可求得矩阵对应于,,i,的特征向量,v,i,。,,系统的特征值和特征向量(,4/4,),如下定义所示,,矩阵特
14、征值的概念可推广至线性定常系统,(,A,,,B,,,C,,,D,),。,,,定义,对于线性定常系统,(,A,,,B,,,C,,,D,),,系统的特征值即为系统矩阵,A,的特征值。,,,关于系统特征值,几点注记:,,A.,,一个,n,维线性定常系统必然有,n,个特征值与之对应。,,B.,,对于物理上可实现的系统,其系统矩阵必为实矩阵。,,因此,线性定常系统的特征多项式必为实系数多项式,即系统的特征值或为实数,或为成对出现的共轭复数。,,系统,特征值的不变性(1/2),2.,系统特征值的不变性,,,系统的特征值表征了系统本质的特征。,,而线性变换只是相当于对系统从另外一个角度来描述而已,并未改
15、变系统的本质。,,刻划了系统本质特征的系统特征值应不随线性变换而改变,即有如下,结论,:,,线性定常系统特征值对线性变换具有不变性。,,系统,特征值的不变性(2/2),对于这个结论,亦可证明如下:,,设系统原状态空间模型中的系统矩阵为,A,,,经线性变换,后,系统矩阵为,可见,系统经线性变换后,其特征值不变。,矩阵,,的特征多项式为,即证明了,A,的特征多项式等于的,,特征多项式。,,特征向量的计算,(1,/9),3.,特征向量的计算,,,如何求解特征值,,i,对应的,特征向量?,,求解特征向量,即求如下齐次矩阵代数方程的非零解,,(,,i,I,-,A,),v,i,=0,,,由于,,i,
16、为,A,的特征值,故,,i,I,-,A,不可逆。,,因此,由代数方程理论可知,该方程组的解并不唯一。,,由特征向量的定义可知,我们需求解的是线性独立的特征向量。,,实际上,具体求特征向量时,可假定其特征向量的某个或几个元素的值,然后再求得该特征向量其他元素的值。,,特征向量的计算,(2,/9),当特征方程存在重根时,线性独立的特征向量可能不唯一。,,因此,就产生如下问题:,,问题:,,对应于特征值,,i,究竟有几个独立的特征向量,?,,答案:,矩阵的重特征值,,i,所对应的线性独立的特征向量可能不止一个。,,它的独立特征向量的数目等价于系统的维数与线性方程组(,2-47),的线性独立的方
17、程数之差,即为,,n,-rank(,,i,I,-,A,),,其中,rank,为矩阵的秩。,,特征向量的计算,(3,/9),因此,,r,重的特征值可能存在1至,r,个线性独立的特征向量。,,由此,导出如下问题:,,独立的特征向量数到底具有什么意义?,,它与特征值的重数之间有何关系?,,下面引入代数重数与几何重数两个概念。,不要混淆喔!,,特征向量的计算,(4,/9),两个基本概念:,,代数重数,。,,由特征方程求得的特征值,,i,的重数称为特征值,,i,的代数重数。,,几何重数,。,,特征值,,i,线性独立的特征向量数称为特征值,,i,的几何重数。,,代数重数和几何重数是两个不同的概念
18、。,,几何重数具有几何上空间表征的意义,它代表在空间分解上不变的几何子空间的数目。,,而代数重数仅具有代数意义,它代表特征值在特征方程的重数。,,特征向量的计算,(5,/9)—,例,2-6,例,2-6,,求如下矩阵的特征向量,解,1.,,由特征方程,|,,I,-,A,|=0,求得系统的特征值。,,特征向量的计算,(,6/9)—,例,2-6,解该,特征方程,,,可求得系统的特征值为,,,1,=1,,,2,=,,3,=2,,即2为系统的二重特征值,其代数重数为2,,,2.,计算,,1,=1,的特征向量。,,按定义有,,(,,1,I-,A,),v,1,=0,,即,,,特征向量的计算,(
19、,7/9)—,例,2-6,解之得特征向量,v,1,的通解为,,v,1,=[,v,11,,v,11,,2,v,11,],,,,令,v,11,=1,,解之得,,v,1,=[,v,11,,v,12,,v,13,],,= [1 1 2],,,特征向量的计算,(,8/9)—,例,2-6,3.,,计算重特征值,,2,=,,3,=2,的特征向量。,,按定义有,,(,,2,I-,A,),v,2,=0,,即,,特征向量的计算,(,9/9)--,例,2-6,由于,,n,-rank(,,2,I,-A)=2,,因此,,,特征值应有,2,个独立特征向量,故该重特征值的几何重数亦为2。,,解之得特征向量
20、,v,2,的通解为,,v,2,=[,v,21,,v,22,,v,21,],,,令,v,21,=1,,v,22,=0,和,1,,解之得,,v,2,=[1 0 1],,和,v,3,=[1 1 1],,,即重特征值,2有两个线性独立的特征向量。,,广义特征向量和特征向量链,(1,/12),4.,广义特征向量和特征向量链,,,某些重特征值的线性独立特征向量数(几何重数)小于其代数重数,从而使得矩阵所有特征值所对应的线性独立特征向量数之和小于矩阵维数。,,为此,为能进行空间的结构分解和分析,下面引入一组辅助的空间变换基向量--广义特征向量和特征向量链。,,,定义,,广义特征向量是重特征值,
21、,i,所对应的某个线性独立的特征向量,v,j,满足如下方程组的向量,v,j,k,:,,广义特征向量和特征向量链,(2,/12),解上述方程组一直到无解为止,就可求得特征值,,i,的特征向量,v,j,所对应的所有广义特征向量,v,j,k,。,,,重特征值,,i,的所有线性独立特征向量,v,j,及其对应的广义特征向量,v,j,k,的个数等于其代数重数,否则就还存在其他特征向量或广义特征向量。,,值得指出的是,并不是重特征值,,i,的任何一组线性独立的特征向量,都能求出所有的广义特征向量。,,若,,i,的某一组特征向量,v,j,及其相应广义特征向量,v,j,k,的个数小于该特征值的代数重数
22、,则应重新选取其他一组线性独立的特征向量并求取相应的广义特征向量。,,广义特征向量和特征向量链,(3,/12),重特征值,,i,的特征向量,v,j,的广义特征向量,v,j,,1,,,v,j,,2,,…,组成的向量链称为,,i,的特征向量,v,j,对应的特征向量链。,,广义特征向量并不是矩阵的特征向量,它只是与对应的特征向量组成该矩阵在,n,维线性空间中的一个不变子空间。,,矩阵的所有特征向量和广义特征向量线性独立,并且构成,n,维线性空间的一组基底。,,这在矩阵分析中是相当重要的。,,广义特征向量和特征向量链,(4,/12),下面通过一个例子来简单介绍线性空间的特征子空间分解。,,例,某5
23、维线性空间,,,存在一个3重特征值和一个2重特征值。,,3重特征值有2个独立特征向量,2重特征值有1个独立特征向量。,,则该线性空间可分解为如下3个独立的不变特征子空间。,,广义特征向量和特征向量链,(5,/12),,广义特征向量和特征向量链,(6,/12),若该5维线性空间,,,3重特征值有1个独立特征向量,2重特征值有2个独立特征向量。,,则该线性空间可分解为如下3个独立的不变特征子空间。,,广义特征向量和特征向量链,(7,/12)—,例,2-7,例,2-7,,求如下矩阵的特征向量和特征向量链,解,1.,,由特征方程|,,I,-,A,|=0,可求得系统的特征值为,,,1,=,,2,=
24、,,3,=-1,,即-1为系统的三重特征值,其代数重数为3。,,,2.,,计算对应于三重特征值-,1,的特征向量。,,按定义有,,(,,1,I-,A,),v,1,=0,,广义特征向量和特征向量链,(8,/12)—,例,2-7,即,由于,,n,-rank(,,1,I-A)=2,,因此,,,该特征值应有,2,个独立特征向量,故该重特征值的几何重数亦为2。,,由于该重特征值的几何重数小于代数重数,因此存在广义特征向量。,,,解之得如下特征向量的通解式,,,v,1,=[,v,11,,v,12,,-(,v,11,+,v,12,),/2],,,广义特征向量和特征向量链,(9,/12)—,例,2-7
25、,分别令两组独立的{,v,11,,v,12,}即可求得,三重特征值,,1,的,两个线性独立的特征向量。,,三重特征值-1只有两个线性独立特征向量,其几何重数为2。,,因此,重特征值-1的两个独立特征向量中有一个一定存在广义特征向量。,,下面通过求广义特征向量来辅助决定选取合适的,v,11,和,v,12,。,,广义特征向量和特征向量链,(,10/12)—,例,2-7,3.,计算对应于特征向量的广义特征向量和特征向量链。,,按定义式(,2-51),,特征向量,v,1,的广义特征向量,v,1,2,满足,,(,,1,I-,A,),v,1,2,=-,v,1,,即,因此,根据方程的可解性,存在广义特征
26、向量的特征向量,v,1,中的,v,11,和,v,12,满足,,v,11,=-3,v,12,3,倍关系,,广义特征向量和特征向量链,(1,1/12)—,例,2-7,此时的广义特征向量的解为,,v,1,2,=,[,r,1,,r,2,,-(,r,1,+,r,2,-,v,12,),/2],,,其中,r,1,和,r,2,为任意数。,,因此存在广义特征向量的特征向量,v,1,为和其对应的广义特征向量可以分别取为,,v,1,=[,v,11,,v,12,,-(,v,11,+,v,12,),/2],,,=[-3,v,12,,v,12,,v,12,],,,=[1 -1/3 -1/3],,,v,1,2,
27、=,[,r,1,,r,2,,-(,r,1,+,r,2,-,v,12,),/2],,,,=[1 2/3 -1],,,广义特征向量和特征向量链,(1,2/12)—,例,2-7,另外一个不存在广义特征向量的,三重特征值,,1,的特征向量为,,v,2,=[,v,11,,v,12,,-(,v,11,+,v,12,),/2],,=[1 0 -1/2],,,,本例共求得3个特征向量和广义特征向量,。,,由于矩阵,A,的维数为3,,3,因此对应于上述特征向量和广义特征向量,已不存在其他广义特征向量。,,故特征值,,1,对应于特征向量,v,1,的特征向量链为,v,1,和,v,1,,2,。,
28、,化状态方程为对角线规范形(1,/12),2.4.3,化状态方程为对角线规范形,,,对角线规范形是指系统矩阵,A,为对角线矩阵的一类状态空间模型。,,对于该类状态空间模型,由于在系统分析和综合时,清晰直观,使问题得以简化,,该类系统可简化成,n,个一阶惯性环节的并联,,故在状态空间分析法中是较重要的一类特殊状态空间模型。,,任何具有,n,个线性独立特征向量的状态空间模型一定能经状态变换变换成对角线规范形。,,该结论可详细地并构造性地证明如下。,,化状态方程为对角线规范形(2,/12),结论,,已知线性定常系统的状态方程为,其中系统矩阵,若,A,的,n,个特征值,,1,,,,2,,…,,,
29、n,所对应的特征向量线性独立,则必存在变换矩阵,P,,,使其进行状态变换,x,=,P,,后为对角线规范形,即系统的状态方程为,为对角线矩阵,并且变换矩阵,P,可取为,,P,=[,p,1,,,p,2,,,…,,p,n,],,其中,p,i,为矩阵,A,对应于特征值,,i,的特征向量。,,三、化状态方程为对角线规范形(3,/12),证明,若,p,i,为对应与特征值,,i,的独立特征向量,则必有,,Ap,i,=,,i,p,i,,因此有,,[,Ap,1,,Ap,2,…,Ap,n,]=[,,1,p,1,,,2,p,2,…,,n,p,n,],,对上式两边分别有,,[,Ap,1,,Ap,2,…,A
30、p,n,]=,A,[,p,1,,p,2,…,p,n,]=,AP,,化状态方程为对角线规范形(4,/12),故,,AP,=,P,diag{,,1,,2,…,,n,},,即,,P,-1,AP,=diag{,,1,,2,…,,n,},即证明了结论。,对原状态方程进行线性变换,,,的后,可得,,化状态方程为对角线规范形(,5/12)-,例,2-8,例,2-8,,试将下列状态空间模型变换为对角线规范形,,化状态方程为对角线规范形(,6/12)-,例,2-8,解,1.,先求,A,的特征值。由特征方程可求得特征值为,,,1,=-1,,,2,=-2,,,3,=-3,,,2.,求特征值所对应的
31、特征向量。,,由前述的方法可求得特征值,,1,,,,2,和,,3,所对应的特征向量分别为,,p,1,=[1 0 1],,,p,2,=[1 2 4],,,p,3,=[1 6 9],,,,3.,取,A,的特征向量组成变换矩阵,P,并求逆阵,P,-1,,,即有,,化状态方程为对角线规范形(,7/12)—,例,2-8,4,.,计算各矩阵,5.,,系统在新的状态变量下的状态空间模型为,,化状态方程为对角线规范形(,8/12),下面给出快速计算矩阵特征向量及对角线规范形的一个特例:,,在第三节讨论的状态空间模型中,其系统矩阵为,其特征多项式为,,|,,I-,A,|=,,n,+,
32、a,1,,n,-1,+…+,a,n,-1,+,a,n,,即该类矩阵的最后一行与特征多项式的系数一一对应。,,该类特殊系统矩阵,A,称为,友矩阵,。,单位,,矩阵,,化状态方程为对角线规范形(,9/12),友矩阵的特征向量的特点:,,当特征值为,,i,时,其对应的特征向量为,该结论可由下式证明。,即,p,i,为友矩阵的特征值,,i,对应的特征向量。,,化状态方程为对角线规范形(,10/12)-,例,2-9,因此,当友矩阵的特征值互异时,将友矩阵变换成对角线矩阵的变换矩阵恰为下述,范德蒙矩阵,例,2-9,,试将下列状态空间模型变换为对角线规范形,,三、化状态方程为对角线规范形(1,1/12
33、)-,例,2-9,解,1.,先求,A,的特征值。由特征方程可求得特征值为,,,1,=0,,,2,=-1,,,3,=-2,,,2.,由于,A,为友矩阵,故将,A,变换成对角线矩阵的变换矩阵,P,及其,逆阵,P,-1,分别为,,三、化状态方程为对角线规范形(1,2/12)—,例,2-9,3,.,计算各矩阵,4,.,,系统在新的状态变量下的状态空间模型为,,化状态方程为约旦规范形(1/1),2.4.4,化状态方程为约旦规范形,,,若系统存在重特征值且线性独立特征向量数小于该特征值的重数时,则系统矩阵,A,不能变换成对角线矩阵。,,在此种情况下,,A,可变换成约旦矩阵,系统表达式可变换成约旦规范
34、形。,,下面将分别讨论,,约旦块和约旦矩阵,,约旦规范形及其计算,,约旦块和约旦矩阵,(1/,3),1.,约旦块和约旦矩阵,,,矩阵的约旦块的定义为,由,l,个约旦块,J,i,组成的块对角的矩阵称为约旦矩阵,如,,J,=block-diag{,J,1,,J,2,,…,,J,l,},,约旦块和约旦矩阵,(2/,3),下述矩阵均为约旦矩阵,上述第一个约旦矩阵有两个约旦块,,,分别为,1,,1,维的特征值,2,的约旦块和,3,,3,维的特征值,-1,的约旦块,;,,第二个约旦矩阵有三个约旦块,,,分别为,1,,1,维的特征值,3,的约旦块以及,1,,1,维和,2,,2,维的特征值,-1,的
35、两个约旦块。,,约旦块和约旦矩阵,(,3/3),由约旦块和约旦矩阵的定义可知,,,对角线矩阵可视为约旦矩阵的特例,,其每个约旦块的维数为1,,1。,,在本课程中,,若未加以特别指出的话,则所有对约旦矩阵有关的结论都同样适用于对角线矩阵。,,约旦规范形及其计算,(1/16),2.,约旦规范形及其计算,,,定义,系统矩阵,A,为约旦矩阵的状态空间模型称为约旦规范形。,,,与对角线规范形一样,约旦规范形也是线性定常系统的状态空间分析中一种重要的状态空间模型。,,下面讨论一般状态空间模型与约旦规范形之间的线性变换的计算问题。,,,对于任何有重特征值且其线性独立特征向量数小于其维数的矩阵,虽然不能通过
36、相似变换化成对角线矩阵,但,,可经相似变换化为约旦矩阵。,,约旦规范形及其计算,(2/16),状态空间模型变换与对角线规范形、约旦矩阵规范形的关系?,一般状态,,空间表达式,对角线规范形,约旦规范形,n,个独立特征向量,代数重数=几何重数,代数重数>几何重数,,n,个独立特征向量与广义特征向量,特例,线性变换,Understand,?,,约旦规范形及其计算,(3/16),若将对角线矩阵视为约旦矩阵的特例的话,则任何矩阵皆可经相似变换化为约旦矩阵。,,相应地,任何状态空间模型都可经状态变换变换成约旦规范形。,,任何矩阵都可变换成约旦矩阵,但能变换成有几个约旦块的约旦矩阵,则与系统的特征向量有关。
37、对此有如下,结论,:,,矩阵所变换成的约旦矩阵的约旦块数等于该矩阵的线性独立特征向量数(即几何重数)。,,约旦规范形及其计算,(4/16),由前面讨论可知:,,任何状态空间模型一定能经状态变换变换成约旦规范形。,,该结论可详细地并构造性地叙述并证明如下。,,约旦规范形及其计算,(4/16),结论,,已知线性定常系统的状态方程为,,x,’,=,A,x,+,B,u,,若,A,的共有,p,(,p,<,n,),个互异的特征值,,l,(,p,,l,,n,),个线性独立特征向量,p,i,及相应地广义特征向量,p,i,j,(,i,=1,2,…,,l,;,j,=1,2,…,,m,i,),,,则必存在变换矩
38、阵,P,,,使其进行状态变换,x,=,P,,后为约旦规范形,即系统的状态方程为,其中系统矩阵为约旦矩阵,并且变换矩阵,P,可取为,,P,=[,P,1,P,2,,…,P,l,],,约旦规范形及其计算,(5/16),变换矩阵,P P,=[,P,1,P,2,,…,P,l,],中的,P,i,为矩阵,A,对应于线性独立特征向量,p,i,的特征向量链组成的如下分块矩阵,证明,若,p,i,和,p,i,j,为对应与特征值,,i,的独立特征向量和广义特征向量,则,必有,,约旦规范形及其计算,(6/16),因此有,其中,J,i,为相应的约旦块。,Ap,i,=,,i,p,i,,,约旦规范形及其计算,(7/16)
39、,即,,P,-1,AP,=block-diag{,J,1,,J,1,…,J,l,},故,AP,i,=,P,i,J,i,,约旦规范形及其计算,(8/16)—例,2-10,即对原状态方程进行线性变换,,的后,可得,,=,P,-1,AP,=block-diag{,J,1,,J,2,,…,,J,l,},,即证明了结论。,,,例,2-10,,试将下列状态空间模型变换为约旦规范形,,约旦规范形及其计算,(9/16)—例,2-10,解,1.,先求,A,的特征值。由特征方程可求得特征值为,,,1,=,,2,=,,3,=2,,,4,=-1,,,2.,求特征值所对应的特征向量。,,由前述的方法可求得特征值
40、2由如下两个线性独立特征向量,,P,1,1,=[1 1 -1 1/3],,P,2,1,=[1 0 0 -1],,,其中,p,1,1,无广义特征向量,而,p,2,1,的广义特征向量为,,P,2,2,=[1 1 0 -1],,,特征值,-1的特征向量为,,P,3,1,=[0 0 0 1],,,约旦规范形及其计算,(10/16)—例,2-10,3.,取,A,的特征向量和广义特征向量组成变换矩阵,P,并求逆阵,P,-1,,,即有,,约旦规范形及其计算,(11/16)—例,2-10,4,.,计算各矩阵,,约旦规范形及其计算,(12/16)—例,2-10,5.,,系统在新的
41、状态变量下的状态空间模型为,,约旦规范形及其计算,(13/16),对前面讨论的特殊矩阵--友矩阵,它的广义特征向量的快速计算方法为:,,当特征值为,,i,时,其对应的特征向量和广义特征向量分别为,,约旦规范形及其计算,(14/16)—例,2-11,解,1.,,先求,A,的特征值。由特征方程可求得特征值为,,,1,=-1,,,2,=,,3,=-2,其中,m,i,为该特征值的代数重数。,,该结论可由广义特征向量和友矩阵的定义证明。,,,例,2-11,,试将下列状态空间模型变换为约旦规范形,,约旦规范形及其计算,(15/16)—例,2-11,3,.,计算各矩阵,2.,,由于,A,为友矩阵,故将,A,变换成对角线矩阵的变换矩阵,P,及其,逆阵,P,-1,分别为,,约旦规范形及其计算,(16/16)-例,2-11,4,.,,系统在新的状态变量下的状态空间模型为,,
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。