八年级数学 几何证明 基本图形与变式
《八年级数学 几何证明 基本图形与变式》由会员分享,可在线阅读,更多相关《八年级数学 几何证明 基本图形与变式(4页珍藏版)》请在装配图网上搜索。
1、八年级数学 几何证明 基本图形与变式 基本图形: 等腰直角△ABC,D是斜边AC的中点,DE⊥AB,DF⊥BC, 则线段DE与DF的关系是_________(图1) (图1) 基本题型:等腰直角△ABC,D是斜边AC的中点,E、F分别在直角边AB,BC上, 且∠EDF=90,则DE与DF的关系是?说明理由(图2) (图2) 变式一:直角△ABC ,D是斜边AC的中点,AB=k BC ,E、F分别在直角边AB,BC上, 且∠EDF=90,则DE与DF的关系是?说明理由(图3) (图3) 变式二:△ABC,∠B=60,D是边AC的中点,AB=k BC
2、 ,E、F分别在边AB,BC上,且∠EDF=120,则DE与DF的关系是?说明理由(图4) (图4) △ABC, D是边AC的中点,AB=k BC ,E、F分别在边AB,BC上,若 DE与DF的关系与变式二相同,则∠EDF与∠B应满足什么关系? 变式三:△ABC, AB=k BC ,D是边AC上一点,AD=m DC,E、F分别在边AB,BC上,且∠EDF与∠B互补,则DE与DF的关系是?说明理由(图5) (图5) 课后测: 如图,△ABC中,∠ A=∠B=α , 点D为AB上一点,AD=K BD, ∠MDN=2α ,当∠MDN绕顶点D旋转的过程中,DN
3、交AC于点P,DM交BC于点Q, ⑴当K=1时,探究线段DP与DQ的数量关系;说明理由 ⑵当K≠ 1时,探究线段DP与DQ的数量关系;说明理由 相似在二次函数中的应用 基本图形 在等腰直角△ABC中,其中AB=AC,∠BAC=90,过B、C作经过A点直线L的垂线,垂足分别为M、N (1)BM、CN、MN之间数量关系为 (2)若将直线l旋转到如图②的位置,其他条件不变,那么BM、CN、MN之间的数量关系为 若将
4、条件“在等腰直角△ABC中,其中AB=AC”,改为“在直角△ABC中,其中AB=kAC”,其它条件不变,探究BM、CN、MN之间数量关系 基本图形的应用 如图,抛物线y=﹣x2+3x+4与x轴交于A、B两点,与y轴交于点C,点P为抛物线上一点,是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由. 已知一次函数y=x+4的图象与二次函数y=ax(x﹣2)的图象相交于A(﹣1,b)和B,点P是线段AB上的动点(不与A、B重合),过点P作PC⊥x轴,与二次函数y=ax(x﹣2)的图象交于点C. (1)求a、b的值 (2)求线段PC长的最大值; (3)若△PAC为直角三角形,请直接写出点P的坐标.
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。