11数据仓库技术讲座_57

上传人:ilkj****kghj 文档编号:244168209 上传时间:2024-10-03 格式:PPTX 页数:67 大小:439.21KB
收藏 版权申诉 举报 下载
11数据仓库技术讲座_57_第1页
第1页 / 共67页
11数据仓库技术讲座_57_第2页
第2页 / 共67页
11数据仓库技术讲座_57_第3页
第3页 / 共67页
资源描述:

《11数据仓库技术讲座_57》由会员分享,可在线阅读,更多相关《11数据仓库技术讲座_57(67页珍藏版)》请在装配图网上搜索。

1、,,,,,,,Click to edit Master title style,Click to edit Master text styles,Second level,Third level,Fourth level,Fifth level,*,Data Warehousing and OLAP Technology,‹#›,,,,,,,,Click to edit Master title style,Click to edit Master text styles,Second level,Third level,Fourth level,Fifth level,*,Data Ware

2、housing and OLAP Technology,‹#›,02 十月 2024,Data Warehousing and OLAP Technology,1,数据仓库和,OLAP,技术,什么是数据仓库,(,What is a data warehouse)?,多维数据模型,(,A multi-dimensional data model),数据仓库体系结构,(,Data warehouse architecture),数据仓库实现,(,Data warehouse implementation),Further development of data cube technology,Fr

3、om data warehousing to data mining,01,三,三月2020,Data Warehousing andOLAP Technology,2,数据库,的,的定义,传统的,数,数据库,技,技术是,以,以单一,的,的数据,资,资源为,中,中心,,同,同时进,行,行从事,务,务处理,,,,批处,理,理到决,策,策分析,的,的各类,处,处理;,数据库,主,主要是,为,为自动,化,化,精,简,简工作,任,任务和,高,高速数,据,据采集,服,服务的,。,。它的,运,运行是,事,事务驱,动,动,面,向,向应用,的,的,数,据,据库的,根,根本任,务,务是完,成,成数据,操,操作,

4、,即,即及时,安,安全地,将,将当前,事,事务所,产,产生的,记,记录保,存,存下来,。,。,01,三,三月2020,Data Warehousing andOLAP Technology,3,两种不,同,同的数,据,据处理,需,需求,计算机,系,系统中,存,存在着,两,两类不,同,同的数,据,据处理,需,需求,,即,即:,操作型,处,处理(事务,处,处理),:,:主要,是,是对一,个,个或一,组,组记录,的,的查询,和,和修改,,,,这时,候,候人们,关,关心的,是,是响应,时,时间、数据的,安,安全性,和,和完整,性,性;,分析型,处,处理(信息,型,型处理,),):用,于,于管理,人,人

5、员的,决,决策分,析,析,如DDS,(,(decisionsupportsystem,),)、多维分,析,析等。,01,三,三月2020,Data Warehousing andOLAP Technology,4,为什么,要,要建立,数,数据仓,库,库?,数据DATA,知识KNOWLEDGE,决定DECISIONS,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,Patterns,Trends,Fac

6、ts,Relations,Models,Associations,Sequences,TargetMarkets,Fundsallocation,Trading options,Wheretoadvertise,Catalog mailinglist,Salesgeography,财经的Financial,经济的Economic,政府Government,销售分,数,数Point-of-Sale,人口统,计,计学Demographic,生活方,式,式Lifestyle,痛苦:太多数,据,据,无,法,法作出,正,正确判,断,断!,,01,三,三月2020,Data Warehousing and

7、OLAP Technology,5,What is DataWarehouse?,"数据仓,库,库是在,企,企业管,理,理和决,策,策中面向主,题,题的,集成的,与时间,相,相关的和不可修,改,改的数据,集,集合,“Adata warehouseisasubject-oriented,integrated,time-variant,andnonvolatilecollection of datainsupportofmanagement’sdecision,-,-making process,.,.”—W.H.Inmon,Data warehousing:,Theprocessofconstr

8、uctingand using datawarehouses,01,三,三月2020,Data Warehousing andOLAP Technology,6,Data Warehouse—Subject-Oriented,Organizedaround major subjects,such ascustomer,product,sales.,Focusingonthemodelingand analysis of datafor decision makers,not on daily operationsortransactionprocessing.,Providea simplea

9、ndconciseview aroundparticular subjectissues byexcludingdatathat arenotuseful in thedecisionsupport process.,01,三,三月2020,Data Warehousing andOLAP Technology,7,,面向应,用,用举例,采购子,系,系统:,订单(,订,订单号,,,,供应,商,商号,,总,总金额,,,,日期,),),订单细,则,则(订,单,单号,,商,商品号,,,,类别,,,,单价,,,,数量,),),供应商,(,(供应,商,商号,,供,供应商,名,名,地,址,址,电,话,话)

10、,销售子,系,系统:,顾客(,顾,顾客号,,,,姓名,,,,性别,,,,年龄,,,,地址,,,,电话,),),销售(,员工号,,,,顾客,号,号,商,品,品号,,数,数量,,单,单价日,期,期),库存管,理,理子系,统,统:,领料单,(,(,领料单,号,号,,领料,人,人,商,品,品号,,数,数量,,日,日期),进料单,(,(,进料单,号,号,订,单,单号,,进,进料人,,,,收料,人,人,日,期,期,),库存(,商,商品号,,,,库房,号,号,库,存,存量,,日,日期),库房(,库房号,,仓库,保,保管员,,,,地点,,,,库存,商,商品描,述,述),人事管,理,理子系,统,统:,员工(,员

11、,员工号,,,,姓名,,,,性别,,,,年龄,,,,部门,号,号),部门(,部,部门号,,,,部门,名,名称,,部,部门主,管,管,电,话,话),,面向主,题,题举例,:,:,商品:,商品固,有,有信息,:,:商品,号,号,商,品,品名,,类,类别,,颜,颜色等,商品采,购,购信息,:,:商品,号,号,供,应,应商号,,,,供应,价,价,供,应,应日期,,,,供应,量,量等,商品销,售,售信息,:,:商品,号,号,顾,客,客号,,售,售价,,销,销售日,期,期,销,售,售量等,商品库,存,存信息,:,:商品,号,号,库,房,房号,,日,日期,,库,库存量,等,等,供应商,:,:,供应商,固,固

12、有信,息,息:供,应,应商号,,,,供应,商,商名,,地,地址,,电,电话等,供应商,品,品信息,:,:供应,商,商号,,商,商品号,,,,供应,价,价,供,应,应日期,,,,供应,量,量等,顾客:,顾客固,有,有信息,:,:顾客,号,号,顾,客,客名,,性,性别,,年,年龄,,住,住址,,电,电话等,顾客购,物,物信息,:,:顾客,号,号,商,品,品号,,售,售价,,购,购买日,期,期,购,买,买量等,01,三,三月2020,Data Warehousing andOLAP Technology,8,Data Warehouse—Integrated,Constructedbyintegra

13、tingmultiple,heterogeneousdata sources,relational databases,flatfiles,on,-,-linetransactionrecords,Data cleaning anddata integration techniquesare applied,.,.,Ensureconsistencyinnaming conventions,encodingstructures,attributemeasures,,,, etc.amongdifferent datasources,E.g,.,.,Hotelprice:currency,,,,

14、 tax,breakfast covered,,,, etc.,When dataismovedtothe warehouse,itisconverted.,01,三,三月2020,Data Warehousing andOLAP Technology,9,Data Warehouse—Time Variant,Thetimehorizon forthedatawarehouseissignificantlylongerthanthat of operational systems,.,.,Operationaldatabase:currentvaluedata.,Data warehouse

15、data:provide information fromahistorical perspective (e.g,.,.,past 5,-,-10years,),),Everykeystructure in thedata warehouse,Containsanelement of time,,,, explicitlyorimplicitly,Butthe keyofoperationaldata mayormaynot contain,“,“timeelement”,.,.,,01,三,三月2020,Data Warehousing andOLAP Technology,10,Data

16、 Warehouse—Non,-,-Volatile,Aphysically separate storeofdata transformed fromthe operational environment.,Operationalupdateofdatadoes notoccurinthedatawarehouseenvironment,.,.,Does notrequire transaction processing,,,, recovery,andconcurrencycontrolmechanisms,Requiresonly twooperations in dataaccessi

17、ng:,initial loadingofdataandaccessofdata.,01,三,三月2020,Data Warehousing andOLAP Technology,11,Data Warehousevs.HeterogeneousDBMS,Traditionalheterogeneous DB integration:,Buildwrappers/mediatorsontopofheterogeneousdatabases,Querydrivenapproach,When aqueryisposedtoaclientsite,ameta-dictionaryisusedtotr

18、anslatethe query intoqueriesappropriateforindividualheterogeneous sites involved,andthe resultsare integratedintoa globalanswerset,Complex information filtering,competeforresources,Data warehouse:update,-,-driven, highperformance,Informationfrom heterogeneoussourcesisintegrated in advanceand storedi

19、nwarehouses fordirectqueryand analysis,01,三,三月2020,Data Warehousing andOLAP Technology,12,Data Warehousevs.OperationalDBMS,OLTP (on-line transaction processing,),),Majortask of traditional relationalDBMS,Day,-,-to,-,-day operations,:,: purchasing,,,, inventory,banking,manufacturing,payroll,registrat

20、ion,accounting,etc,.,.,OLAP (on-line analyticalprocessing),Majortask of datawarehouse system,Data analysis anddecisionmaking,Distinctfeatures,(,(OLTPvs.OLAP),:,:,User andsystemorientation,:,: customer vs.market,Data contents:current,detailedvs.historical,consolidated,Databasedesign,:,: ER +applicati

21、onvs,.,. star,+,+subject,View:current,localvs.evolutionary,integrated,Accesspatterns,:,: updatevs.read-only butcomplex queries,01,三,三月2020,Data Warehousing andOLAP Technology,13,OLTP vs.OLAP,01,三,三月2020,Data Warehousing andOLAP Technology,14,WhySeparateDataWarehouse,?,?,High performance forboth syst

22、ems,DBMS—tunedforOLTP:access methods,,,, indexing,concurrencycontrol,recovery,Warehouse,—,—tunedfor OLAP,:,: complexOLAPqueries,multidimensional view,,,, consolidation,.,.,Differentfunctions anddifferentdata:,missing data: Decision supportrequireshistoricaldata which operational DBsdonottypically ma

23、intain,data consolidation:DSrequiresconsolidation (aggregation,summarization)ofdatafrom heterogeneoussources,data quality: differentsources typicallyuseinconsistent datarepresentations,codesandformatswhichhave to be reconciled,01,三,三月2020,Data Warehousing andOLAP Technology,15,Data Warehousing andOL

24、AP Technology,What is adatawarehouse,?,?,A multi-dimensional datamodel,Data warehousearchitecture,Data warehouseimplementation,Further development of datacubetechnology,From datawarehousingtodatamining,01,三,三月2020,Data Warehousing andOLAP Technology,16,From TablesandSpreadsheets to DataCubes,A dataw

25、arehouse is based on amultidimensional datamodelwhichviewsdata in theform of adatacube,A datacube,suchassales, allowsdata to be modeledand viewedinmultipledimensions,Dimensiontables,such asitem (item_name,,,, brand,type),ortime(day,week,month,,,, quarter,,,, year,),),Fact table contains measures (su

26、ch asdollars_sold) andkeys to eachofthe relateddimension tables,Indata warehousing literature,,,, an n,-,-Dbase cubeiscalled abase cuboid. Thetopmost0-Dcuboid,whichholdsthehighest-levelofsummarization,iscalledtheapex cuboid.Thelatticeofcuboids forms adata cube,.,.,01,三,三月2020,Data Warehousing andOLA

27、P Technology,17,Cube:A LatticeofCuboids,,,,,,,,,,,,,,,,,all,time,item,location,supplier,time,item,time,location,time,supplier,item,location,item,supplier,location,supplier,time,item,,,,location,time,item,,,,supplier,time,location,supplier,item,location,supplier,time,item,location,supplier,0-D(apex,)

28、,) cuboid,1-D cuboids,2-D cuboids,3-D cuboids,4-D(base,),) cuboid,01,三,三月2020,Data Warehousing andOLAP Technology,18,Conceptual Modeling of DataWarehouses,Modelingdata warehouses,:,: dimensions,&,&measures,Star schema:A facttableinthe middleconnectedtoasetofdimension tables,Snowflakeschema:A refinem

29、entofstarschemawheresomedimensionalhierarchyisnormalizedinto aset of smallerdimension tables, formingashapesimilar to snowflake,Fact constellations:Multiplefact tablessharedimensiontables, viewedasa collectionofstars,,,, thereforecalledgalaxyschemaorfact constellation,01,三,三月2020,Data Warehousing an

30、dOLAP Technology,19,Example of StarSchema,,,time_key,day,day_of_the_week,month,quarter,year,time,location_key,street,city,province_or_street,country,location,SalesFact Table,,time_key,item_key,,branch,_,_key,,location_key,,units_sold,,dollars_sold,,avg,_,_sales,Measures,item_key,item_name,brand,type

31、,supplier_type,item,branch_key,branch_name,branch_type,branch,01,三,三月2020,Data Warehousing andOLAP Technology,20,Example of SnowflakeSchema,,time_key,day,day_of_the_week,month,quarter,year,time,location_key,street,city_key,location,SalesFact Table,,time_key,item_key,,branch,_,_key,,location_key,,uni

32、ts_sold,,dollars_sold,,avg,_,_sales,Measures,item_key,item_name,brand,type,supplier_key,item,branch_key,branch_name,branch_type,branch,supplier_key,supplier_type,supplier,city_key,city,province_or_street,country,city,01,三,三月2020,Data Warehousing andOLAP Technology,21,Example of FactConstellation,,ti

33、me_key,day,day_of_the_week,month,quarter,year,time,location_key,street,city,province_or_street,country,location,SalesFact Table,,time_key,item_key,,branch,_,_key,,location_key,,units_sold,,dollars_sold,,avg,_,_sales,Measures,item_key,item_name,brand,type,supplier_type,item,branch_key,branch_name,bra

34、nch_type,branch,,ShippingFact Table,,time_key,item_key,,shipper_key,,from_location,,to_location,,dollars_cost,,units_shipped,shipper_key,shipper_name,location_key,shipper_type,shipper,01,三,三月2020,Data Warehousing andOLAP Technology,22,A DataMining Query Language,DMQL:LanguagePrimitives,Cube Definiti

35、on,(,(FactTable,),),definecube,[,[],:,:,<,,DimensionDefinition,(,( DimensionTable,),),definedimension,>as(,),),Special Case,(,(SharedDimensionTables),Firsttime as “cube definition,”,”,definedimension,>as

36、name,_,_first,_,_time>incube,>,,01,三,三月2020,Data Warehousing andOLAP Technology,23,Defininga StarSchema in DMQL,definecubesales_star [time,item,branch,,,, location]:,dollars_sold,=,=sum,(,(sales,_,_in,_,_dollars),,,, avg_sales,=,= avg(sales_in_dollars),units,_,_sold,=,= count(

37、*,),),definedimensiontimeas(time_key,,,, day,day_of_week,,,, month,quarter,year),definedimensionitemas(item_key,,,, item,_,_name,brand,,,, type,,,, supplier_type,),),definedimensionbranchas(branch_key,branch_name,,,, branch_type),definedimensionlocationas(location,_,_key,street,,,, city,,,, province

38、_or_state,country),01,三,三月2020,Data Warehousing andOLAP Technology,24,Defininga SnowflakeSchemainDMQL,definecubesales_snowflake,[,[time,,,, item,,,, branch,location,],]:,dollars_sold,=,=sum,(,(sales,_,_in,_,_dollars),,,, avg_sales,=,= avg(sales_in_dollars),units,_,_sold,=,= count(*,),),definedimensi

39、ontimeas(time_key,,,, day,day_of_week,,,, month,quarter,year),definedimensionitemas(item_key,,,, item,_,_name,brand,,,, type,,,,supplier(supplier_key,,,, supplier_type,),)),definedimensionbranchas(branch_key,branch_name,,,, branch_type),definedimensionlocationas(location,_,_key,street,,,,city(city,_

40、,_key,province_or_state,country),),),01,三,三月2020,Data Warehousing andOLAP Technology,25,Defininga FactConstellationinDMQL,definecubesales,[,[time,item,branch,location],:,:,dollars_sold,=,=sum,(,(sales,_,_in,_,_dollars),,,, avg_sales,=,= avg(sales_in_dollars),units,_,_sold,=,= count(*,),),definedimen

41、siontimeas(time_key,,,, day,day_of_week,,,, month,quarter,year),definedimensionitemas(item_key,,,, item,_,_name,brand,,,, type,,,, supplier_type,),),definedimensionbranchas(branch_key,branch_name,,,, branch_type),definedimensionlocationas(location,_,_key,street,,,, city,,,, province_or_state,country

42、),definecubeshipping,[,[time,item,shipper,from_location,to,_,_location,],]:,dollar,_,_cost,=,= sum(cost_in_dollars,),),unit_shipped,=,=count(,*,*),definedimensiontimeastimeincubesales,definedimensionitemasitemincubesales,definedimensionshipperas(shipper_key,,,, shipper,_,_name,locationaslocationincu

43、besales,shipper_type),definedimensionfrom_locationaslocationincubesales,definedimensionto_locationaslocationincubesales,01,三,三月2020,Data Warehousing andOLAP Technology,26,Measures:ThreeCategories,distributive: if theresultderivedbyapplyingthefunctiontonaggregatevalues is thesame as thatderivedbyappl

44、yingthefunctiononall thedata withoutpartitioning.,E.g,.,.,count(,),),sum,(,(),min(),,,, max(,),).,algebraic:ifitcanbecomputedbyanalgebraic function withMarguments,(,(whereMisa boundedinteger),,,, eachofwhichisobtainedbyapplyingadistributiveaggregate function.,E.g,.,.,avg,(,(),min_N,(,(),standard,_,_

45、deviation(),.,.,holistic:ifthereisnoconstantboundonthestoragesize neededtodescribea subaggregate.,E.g,.,.,median,(,(),mode(,),),rank(),.,.,01,三,三月2020,Data Warehousing andOLAP Technology,27,A ConceptHierarchy:Dimension,(,(location),all,Europe,North_America,Mexico,Canada,Spain,Germany,Vancouver,M.Win

46、d,L.Chan,...,...,...,...,...,...,all,region,office,country,Toronto,Frankfurt,city,01,三,三月2020,Data Warehousing andOLAP Technology,28,View of Warehousesand Hierarchies,Specification of hierarchies,Schemahierarchy,day,<,<,{,{month,<,

47、ensive,01,三,三月2020,Data Warehousing andOLAP Technology,29,Multidimensional Data,Salesvolumeasafunctionofproduct,month,and region,,Product,Region,Month,Dimensions:Product,Location,Time,Hierarchicalsummarizationpaths,IndustryRegionYear,,CategoryCountryQuarter,,ProductCityMonthWeek,,OfficeDay,01,三,三月20

48、20,Data Warehousing andOLAP Technology,30,A SampleData Cube,,Totalannualsales,ofTVinU.S.A,.,.,Date,Product,Country,All, All, All,,,,,,,,,,,sum,sum,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,TV,VCR,PC,1,Qtr,2,Qtr,3,Qtr,4,Qtr,U.S.A,Canada,Mexico,sum,01,三,三月2020,Data Warehousing andOLAP Technology,31,Cuboids

49、Correspondingtothe Cube,,,,,,,,,all,product,date,country,product,date,product,country,date,country,product,date,country,0-D(apex,),) cuboid,1-D cuboids,2-D cuboids,3-D(base,),) cuboid,01,三,三月2020,Data Warehousing andOLAP Technology,32,Browsinga DataCube,Visualization,OLAP capabilities,Interactiveman

50、ipulation,01,三,三月2020,Data Warehousing andOLAP Technology,33,Typical OLAPOperations,Roll up (drill-up),:,:summarizedata,byclimbinguphierarchyorbydimension reduction,Drilldown (roll down,),):reverse of roll,-,-up,from higherlevelsummary to lower level summaryordetaileddata,orintroducingnew dimensions

51、,Sliceanddice:,project andselect,Pivot,(,(rotate):,reorientthecube,visualization,3Dtoseries of 2D planes.,Otheroperations,drillacross,:,:involving,(,(across)morethan onefact table,drillthrough:through thebottomlevelofthe cubetoits back,-,-end relationaltables (usingSQL,),),01,三,三月2020,Data Warehousi

52、ng andOLAP Technology,34,A Star,-,-Net Query Model,,,,,,,,,,,,,,,,,,,,,,ShippingMethod,AIR,-,-EXPRESS,TRUCK,ORDER,CustomerOrders,CONTRACTS,Customer,Product,PRODUCT GROUP,PRODUCT LINE,PRODUCT ITEM,SALESPERSON,DISTRICT,DIVISION,Organization,Promotion,CITY,COUNTRY,REGION,Location,DAILY,QTRLY,ANNUALY,Ti

53、me,Each circleiscalledafootprint,01,三,三月2020,Data Warehousing andOLAP Technology,35,Data Warehousing andOLAP Technologyfor DataMining,What is adatawarehouse,?,?,A multi-dimensional datamodel,Data warehousearchitecture,Data warehouseimplementation,Further development of datacubetechnology,From datawa

54、rehousingtodatamining,01,三,三月2020,Data Warehousing andOLAP Technology,36,DesignofaData Warehouse:ABusinessAnalysisFramework,Four views regardingthedesign of adatawarehouse,Top,-,-downview,allowsselection of therelevantinformationnecessaryfor thedata warehouse,Data sourceview,exposes theinformationbe

55、ingcaptured,stored,andmanagedbyoperationalsystems,Data warehouseview,consistsoffact tablesanddimension tables,Businessqueryview,sees theperspectivesofdatainthewarehouse fromthe viewofend-user,01,三,三月2020,Data Warehousing andOLAP Technology,37,Data WarehouseDesignProcess,Top,-,-down,bottom-up approac

56、hesoracombinationofboth,Top,-,-down: Startswith overalldesign andplanning,(,(mature),Bottom,-,-up: Startswith experiments andprototypes (rapid),From software engineering point of view,Waterfall:structured andsystematic analysis at eachstepbeforeproceedingtothenext,Spiral:rapidgeneration of increasin

57、glyfunctional systems,,,, short turnaround time,,,, quick turnaround,Typical datawarehouse designprocess,Chooseabusinessprocesstomodel,e.g.,orders,invoices,etc.,Choosethegrain(atomiclevelofdata)ofthebusinessprocess,Choosethedimensionsthat willapplytoeachfact table record,Choosethemeasurethat willpop

58、ulateeachfact table record,01,三,三月2020,Data Warehousing andOLAP Technology,38,,Multi-TieredArchitecture,,Data,Warehouse,,,,Extract,Transform,Load,Refresh,OLAP Engine,Analysis,Query,Reports,Data mining,Monitor,&,Integrator,,,,Metadata,Data Sources,Front-EndTools,Serve,,,,,,Data Marts,,,,,,,Operationa

59、l,,DBs,other,sources,,,,Data Storage,,,,,OLAP Server,01,三,三月2020,Data Warehousing andOLAP Technology,39,Source,Databases,Data Extraction,,Transformation, load,,,Warehouse,Admin.,Tools,Extract,,Transform,and Load,,Data,Modeling,Tool,,,,Central,Metadata,,Architected,Data Marts,Data Access,and Analysis

60、,End-User,DW Tools,Central Data,Warehouse,,,,Central,Data,Warehouse,,,,,Mid-,Tier,,Mid-,Tier,,,,,,,,,,Data,Mart,,,,Data,Mart,,,,Local,Metadata,,,,Local,Metadata,,,,Local,Metadata,Metadata,Exchange,MDB,,,,,,,,,,Data,Cleansing,Tool,,,,,,,,,,,,,,Relational,Appl. Package,Legacy,External,,RDBMS,RDBMS,体系结

61、,构,构,[,Pieter,,,,1998,],数据仓,库,库的焦,点,点问题,-,-,数据的,获,获得、,存,存储和,使,使用,,Relational,Package,Legacy,External,source,Data,Clean,Tool,Data,Staging,Enterprise,Data,Warehouse,Datamart,Datamart,RDBMS,ROLAP,RDBMS,,,,End-User,Tool,,,,End-User,Tool,,MDB,,,,End-User,Tool,,,,End-User,Tool,,,,,,,,数据仓,库,库和集,市,市的加,载,载能力

62、,至,至关重,要,要,数据仓,库,库和集,市,市的查,询,询输出,能,能力至,关,关重要,,ETL工具,去掉操,作,作型数,据,据库中,的,的不需,要,要的数,据,据,统一转,换,换数据,的,的名称,和,和定义,计算汇,总,总数据,和,和派生,数,数据,估计遗,失,失数据,的,的缺省,值,值,调节源,数,数据的,定,定义变,化,化,01,三,三月2020,Data Warehousing andOLAP Technology,42,ThreeData WarehouseModels,Enterprise warehouse,collectsallofthe information about

63、subjects spanning theentireorganization,Data Mart,a subsetofcorporate,-,-widedata thatisofvaluetoaspecificgroupsofusers,.,.Itsscopeisconfinedtospecific,,,, selected groups,suchasmarketingdatamart,Independentvs.dependent (directlyfrom warehouse)datamart,Virtual warehouse,A setofviewsover operational

64、databases,Only someofthe possible summaryviewsmay be materialized,01,三,三月2020,Data Warehousing andOLAP Technology,43,Data WarehouseDevelopment:ARecommendedApproach,,Defineahigh-level corporatedata model,,Data Mart,,Data Mart,,,,DistributedData Marts,Multi-Tier DataWarehouse,Enterprise DataWarehouse,

65、Modelrefinement,Modelrefinement,01,三,三月2020,Data Warehousing andOLAP Technology,44,OLAP ServerArchitectures,Relational OLAP,(,(ROLAP),Userelationalorextended-relational DBMStostoreand managewarehousedataandOLAPmiddlewaretosupport missingpieces,Include optimizationofDBMS backend,,,, implementation of

66、 aggregation navigationlogic,,,, andadditional tools andservices,greater scalability,Multidimensional OLAP,(,(MOLAP),Array-basedmultidimensional storageengine (sparsematrix techniques,),),fast indexing to pre-computedsummarized data,HybridOLAP,(,(HOLAP,),),User flexibility,e.g,.,.,low level:relational,high-level:array,SpecializedSQLservers,specializedsupport forSQLqueriesover star,/,/snowflake schemas,01,三,三月2020,Data Warehousing andOLAP Technology,45,Data Warehousing andOLAP Technologyfor DataM

展开阅读全文
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

相关资源

更多
正为您匹配相似的精品文档
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!