BayesianHierarchicalModelsforDetectingSafetySignalsin检测安全信号的贝叶斯层次模型

上传人:e****s 文档编号:252322717 上传时间:2024-11-14 格式:PPT 页数:40 大小:830.50KB
收藏 版权申诉 举报 下载
BayesianHierarchicalModelsforDetectingSafetySignalsin检测安全信号的贝叶斯层次模型_第1页
第1页 / 共40页
BayesianHierarchicalModelsforDetectingSafetySignalsin检测安全信号的贝叶斯层次模型_第2页
第2页 / 共40页
BayesianHierarchicalModelsforDetectingSafetySignalsin检测安全信号的贝叶斯层次模型_第3页
第3页 / 共40页
资源描述:

《BayesianHierarchicalModelsforDetectingSafetySignalsin检测安全信号的贝叶斯层次模型》由会员分享,可在线阅读,更多相关《BayesianHierarchicalModelsforDetectingSafetySignalsin检测安全信号的贝叶斯层次模型(40页珍藏版)》请在装配图网上搜索。

1、Click to edit Master title style,Click to edit Master text styles,Second level,Third level,Fourth level,Fifth level,*,Bayesian Hierarchical Models for Detecting Safety Signals in Clinical Trials,H.Amy Xia and Haijun Ma,Amgen,Inc.,MBSW 2021,Muncie,IN,March 20,2021,Disclaimer:The views expressed in th

2、is presentation represent personal views and do not necessarily represent the views or practices of Amgen.,Outline,Introduction,A motivating example,Bayesian Hierarchical Models,Meta analysis of Adverse Events data from multiple studies incorporating MedDRA structure,Incorporate patient level data,E

3、ffective graphics,Closing Remarks,Three-Tier System for Analyzing Adverse Events in Clinical Trials,Tier 1:Pre-specified Detailed Analysis and Hypothesis Testing,Tier 1 AEs are events for which a hypothesis has been defined,Tier 2:Signal Detection among Common Events,Tier 2 AEs are those that are no

4、t pre-specified and“common,Tier 3:Descriptive Analysis of Infrequent AEs,Tier 3 AEs are those that are not pre-specified and infrequent,Gould 2002&Mehrotra 2004,SPERT White Paper 2021,Multiplicity Issue in Detecting Signals Is Challenging,Detection of safety signals from routinely collected,not pre-

5、specified AE data in clinical trials is a critical task in drug development,Multiplicity issue in such a setting is a challenging statistical problem,Without multiplicity considerations,there is a potential for an excess of false positive signals,Traditional ways of adjusting for multiplicity such a

6、s Bonferroni may lead to an excessive rate of false negatives,The challenge is to develop a procedure for flagging safety signals which provides a proper balance between no adjustment versus too much adjustment,Considerations Regarding Whether Flagging an Event,Actual significance levels,Total numbe

7、r of types of AEs,Rates for those AEs not considered for flagging,Biologic relationships among various AEs,1,st,two are standard considerations in the frequentist approach.The 2,nd,two are not,but relevant in the Bayesian approach,-Berry and Berry,2004,Bayesian Work in Signal Detection,Spontaneous a

8、dverse drug reaction reports,Gamma Poisson Shrinker(GPS)on FDA AERS database(DuMouchel,1999),Bayesian Confidence Propagation Neural Network(BCPNN)on WHO database(Bate,et al.1998),Clinical trial safety(AE)data,Bayesian hierarchical mixture modeling(Berry and Berry,2004),Meta Analysis,Glass(1976),Meta

9、-analysis refers to a statistical analysis that combines the results of some collection of related studies to arrive a single conclusion to the question at hand,Meta-analysis based on,aggregate patient data(APD meta-analysis),Individual patient data(IPD)meta-analysis,Bayesian modeling is a natural c

10、hoice to incorporate the complex hierarchical structure of the data,George Chi,H.M.James Hung,Robert ONeill(FDA CDER),“Safety assessment is one area where frequentist strategies have been less applicable.Perhaps Bayesian approaches in this area have more promise.,(Pharmaceutical Report,2002),An Exam

11、ple,Data from four double-blind placebo-controlled studies on drug X.Study populations are similar.,Sample sizes:,After converting all AEs into same MedDRA version,reported AEs are coded to 464 PTs under 23 SOCs and 233 HLTs,Study,Drug X,N,Drug X,Subj-yr,Placebo,N,Placebo,Subj-yr,Study A,57,28.25,55

12、,19.02,Study B,486,104.75,166,34.93,Study C,390,85.44,193,40.97,Study D,312,68.78,306,65.91,N_0:sample size in placebo arm;N_1:sample size in treatment arm,n_0:#subject with AE in placebo arm;n_1:#subject with AE in treatment arm,rt_0:subject incidence in placebo arm;rt_1:subject incidence in treatm

13、ent arm,Proposed Bayesian Approach,Hierarchical mixture models for aggregated binary responses was constructed based on the work by Berry&Berry(2004),Explore impact of using different MedDRA hierarchy,Inclusion of study effects,Further extended to a hierarchical Poisson mixture model,to account for

14、different exposure/follow-up times between patients,Individual patient level models are discussed,Implemented the above models with available software,WinBUGS for model implementation,S-Plus graphics for inference,MedDRA,MedDRA(the Medical Dictionary for Regulatory Activities Terminology)is a contro

15、lled vocabulary widely used as a medical coding scheme.,MedDRA Definition(MSSO):,MedDRA is a clinically-validated international medical terminology used by regulatory authorities and the regulated biopharmaceutical industry.The terminology is used through the entire regulatory process,from pre-marke

16、ting to post-marketing,and for data entry,retrieval,evaluation,and presentation.,MSSO:Introduction to MedDRA,MedDRA and Pharmacovigilance-The Way Forward,7/8/99,MedDRA and Pharmacovigilance-The Way Forward,7/8/99,SOC=Respiratory,thoracic and,mediastinal disorders,HLGT=Respiratory tract,infections,HLT=Viral upper respiratory,tract infections,HLT=Influenza viral,infections,HLGT=Viral infectious,disorders,SOC=Infections and,infestations,PT=Influenza,Example of MedDRA Hierarchy,MSSO:Introduction to

展开阅读全文
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

相关资源

更多
正为您匹配相似的精品文档
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!