BayesianHierarchicalModelsforDetectingSafetySignalsin检测安全信号的贝叶斯层次模型



《BayesianHierarchicalModelsforDetectingSafetySignalsin检测安全信号的贝叶斯层次模型》由会员分享,可在线阅读,更多相关《BayesianHierarchicalModelsforDetectingSafetySignalsin检测安全信号的贝叶斯层次模型(40页珍藏版)》请在装配图网上搜索。
1、Click to edit Master title style,Click to edit Master text styles,Second level,Third level,Fourth level,Fifth level,*,Bayesian Hierarchical Models for Detecting Safety Signals in Clinical Trials,H.Amy Xia and Haijun Ma,Amgen,Inc.,MBSW 2021,Muncie,IN,March 20,2021,Disclaimer:The views expressed in th
2、is presentation represent personal views and do not necessarily represent the views or practices of Amgen.,Outline,Introduction,A motivating example,Bayesian Hierarchical Models,Meta analysis of Adverse Events data from multiple studies incorporating MedDRA structure,Incorporate patient level data,E
3、ffective graphics,Closing Remarks,Three-Tier System for Analyzing Adverse Events in Clinical Trials,Tier 1:Pre-specified Detailed Analysis and Hypothesis Testing,Tier 1 AEs are events for which a hypothesis has been defined,Tier 2:Signal Detection among Common Events,Tier 2 AEs are those that are no
4、t pre-specified and“common,Tier 3:Descriptive Analysis of Infrequent AEs,Tier 3 AEs are those that are not pre-specified and infrequent,Gould 2002&Mehrotra 2004,SPERT White Paper 2021,Multiplicity Issue in Detecting Signals Is Challenging,Detection of safety signals from routinely collected,not pre-
5、specified AE data in clinical trials is a critical task in drug development,Multiplicity issue in such a setting is a challenging statistical problem,Without multiplicity considerations,there is a potential for an excess of false positive signals,Traditional ways of adjusting for multiplicity such a
6、s Bonferroni may lead to an excessive rate of false negatives,The challenge is to develop a procedure for flagging safety signals which provides a proper balance between no adjustment versus too much adjustment,Considerations Regarding Whether Flagging an Event,Actual significance levels,Total numbe
7、r of types of AEs,Rates for those AEs not considered for flagging,Biologic relationships among various AEs,1,st,two are standard considerations in the frequentist approach.The 2,nd,two are not,but relevant in the Bayesian approach,-Berry and Berry,2004,Bayesian Work in Signal Detection,Spontaneous a
8、dverse drug reaction reports,Gamma Poisson Shrinker(GPS)on FDA AERS database(DuMouchel,1999),Bayesian Confidence Propagation Neural Network(BCPNN)on WHO database(Bate,et al.1998),Clinical trial safety(AE)data,Bayesian hierarchical mixture modeling(Berry and Berry,2004),Meta Analysis,Glass(1976),Meta
9、-analysis refers to a statistical analysis that combines the results of some collection of related studies to arrive a single conclusion to the question at hand,Meta-analysis based on,aggregate patient data(APD meta-analysis),Individual patient data(IPD)meta-analysis,Bayesian modeling is a natural c
10、hoice to incorporate the complex hierarchical structure of the data,George Chi,H.M.James Hung,Robert ONeill(FDA CDER),“Safety assessment is one area where frequentist strategies have been less applicable.Perhaps Bayesian approaches in this area have more promise.,(Pharmaceutical Report,2002),An Exam
11、ple,Data from four double-blind placebo-controlled studies on drug X.Study populations are similar.,Sample sizes:,After converting all AEs into same MedDRA version,reported AEs are coded to 464 PTs under 23 SOCs and 233 HLTs,Study,Drug X,N,Drug X,Subj-yr,Placebo,N,Placebo,Subj-yr,Study A,57,28.25,55
12、,19.02,Study B,486,104.75,166,34.93,Study C,390,85.44,193,40.97,Study D,312,68.78,306,65.91,N_0:sample size in placebo arm;N_1:sample size in treatment arm,n_0:#subject with AE in placebo arm;n_1:#subject with AE in treatment arm,rt_0:subject incidence in placebo arm;rt_1:subject incidence in treatm
13、ent arm,Proposed Bayesian Approach,Hierarchical mixture models for aggregated binary responses was constructed based on the work by Berry&Berry(2004),Explore impact of using different MedDRA hierarchy,Inclusion of study effects,Further extended to a hierarchical Poisson mixture model,to account for
14、different exposure/follow-up times between patients,Individual patient level models are discussed,Implemented the above models with available software,WinBUGS for model implementation,S-Plus graphics for inference,MedDRA,MedDRA(the Medical Dictionary for Regulatory Activities Terminology)is a contro
15、lled vocabulary widely used as a medical coding scheme.,MedDRA Definition(MSSO):,MedDRA is a clinically-validated international medical terminology used by regulatory authorities and the regulated biopharmaceutical industry.The terminology is used through the entire regulatory process,from pre-marke
16、ting to post-marketing,and for data entry,retrieval,evaluation,and presentation.,MSSO:Introduction to MedDRA,MedDRA and Pharmacovigilance-The Way Forward,7/8/99,MedDRA and Pharmacovigilance-The Way Forward,7/8/99,SOC=Respiratory,thoracic and,mediastinal disorders,HLGT=Respiratory tract,infections,HLT=Viral upper respiratory,tract infections,HLT=Influenza viral,infections,HLGT=Viral infectious,disorders,SOC=Infections and,infestations,PT=Influenza,Example of MedDRA Hierarchy,MSSO:Introduction to
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 36个关键词详解2025政府工作报告
- 学习2025年政府工作报告中的八大科技关键词
- 2025年政府工作报告要点速览接续奋斗共谱新篇
- 学习2025政府工作报告里的加减乘除
- 深化农村改革党课ppt课件(20250305)
- 弘扬雷锋精神凝聚奋进力量学习雷锋精神的丰富内涵和时代价值
- 深化农村改革推进乡村全面振兴心得体会范文(三篇)
- 2025年民营企业座谈会深度解读PPT课件
- 领导干部2024年述职述廉述责述学述法个人报告范文(四篇)
- 读懂2025中央一号党课ppt课件
- 2025年道路运输企业主要负责人安全考试练习题[含答案]
- 2024四川省雅安市中考英语真题[含答案]
- 2024湖南省中考英语真题[含答案]
- 2024宁夏中考英语真题[含答案]
- 2024四川省内江市中考英语真题[含答案]