AnIntroductiontoVariationalMethodsforGraphicalModels的图形化模型的变分方法的介绍

上传人:e****s 文档编号:252464437 上传时间:2024-11-16 格式:PPT 页数:25 大小:517.50KB
收藏 版权申诉 举报 下载
AnIntroductiontoVariationalMethodsforGraphicalModels的图形化模型的变分方法的介绍_第1页
第1页 / 共25页
AnIntroductiontoVariationalMethodsforGraphicalModels的图形化模型的变分方法的介绍_第2页
第2页 / 共25页
AnIntroductiontoVariationalMethodsforGraphicalModels的图形化模型的变分方法的介绍_第3页
第3页 / 共25页
资源描述:

《AnIntroductiontoVariationalMethodsforGraphicalModels的图形化模型的变分方法的介绍》由会员分享,可在线阅读,更多相关《AnIntroductiontoVariationalMethodsforGraphicalModels的图形化模型的变分方法的介绍(25页珍藏版)》请在装配图网上搜索。

1、按一下以編輯母片標題樣式,按一下以編輯母片,第二層,第三層,第四層,第五層,NTNU Speech Lab,*,An Introduction to Variational Methods for Graphical Models,Michael I.Jordan,Zoubin Ghahramani,Tommi S.Jaakkola and Lawrence K.Saul,報告者:邱炫盛,Outline,Introduction,Exact Inference,Basics of Variational Methodology,Introduction,The problem of proba

2、bilistic inference in graphical models is the problem of computing a conditional probability distribution,Exact Inference,Junction Tree Algorithm,Moralization,Triangulation,Graphical models,Directed(&Acyclic),Bayesian Network,Local conditional probabilities,Undirected,Markov random field,Potentials

3、with the cliques,Exact Inference,Directed Graphical Model,Specified numerically by associating local conditional probabilities with each nodes in the graph,The conditional probability,The probability of node given the values of its parents,Exact Inference,Joint probability:,Directed Graph,Exact Infe

4、rence,Undirected Graphical Model,specified numerically by associating“potentials with the clique of the graph,Potential,A function on the set of configurations of a clique(that is,a setting of values for all of the nodes in the clique),Clique,(Maximal)complete subgraph,Exact Inference,Undirected Gra

5、ph,Joint probability:,Partition function,Exact Inference,The junction tree algorithm compiles directed graphical models into undirected graphical models,Moralization,Triangulation,Moralization,Convert the directed graph into an undirected graph(skip when undirected graph),The variables do not always

6、 appear together within a clique,“marry the parents of all of the nodes with undirected edges and then drop the arrows(moral graph),Exact Inference,Triangulation,Take a moral graph as input and produces as output an undirected graph in which additional edges(possibly)been added(allow recursive calcu

7、lation),A graph is not triangulated if there are 4-cycles which do not have a chord,Chord,An edge between non-neighboring nodes,Exact Inference,4-cycle Graph,ABD,BCD,BD,Exact Inference,Once a graph has been triangulated,it is possible to arrange cliques of the graph into a data structure known as a

8、junction tree,Running intersection property,If a node appears in any two cliques in the tree,it appears in all cliques that lie on the path between the two cliques(the cliques assign the same marginal probability to the nodes that they have in common),Local consistency implies global consistency in

9、a junction tree because of running intersection property,Exact Inference,The QMR-DT database,A diagnostic aid for internal medicine,Basics of variational methodology,Variational methods,used as approximation methods,convert a complex problem into a simpler problem,The decoupling achieved via an expa

10、nsion of the problem to include additional parameters,The terminology“variational comes from the roots of the techniques in the calculus of variation,Basics of variational methodology,Example:logarithm,:variational parameter,If changes,the family of such lines forms an upper envelope of the logarith

11、m function,So,The minimum over these bounds is the exact value,Basics of variational methodology,Basics of variational methodology,Example:logistic regression model,Logistic concave,So,Basics of variational methodology,Then,take the exponential of both sides,Finally,Basics of variational methodology

12、,Convex duality,A concave function can be represented via a conjugate or dual function,Upper bound,Non-linear bound,Basics of variational methodology,To summarize,if the function is already convex or concave then we simply calculate the conjugate function or then we look for an invertible transforma

13、tion that render the function convex or concave if the function is not convex or concave,Basics of variational methodology,Approximation for joint and conditional probabilities,Consider directed graph and upper bound,Let E and H are disjoint,treat right side as a function to be minimized with respec

14、t,The best global bounds are obtained when the probabilistic dependencies in the distribution are reflected in dependencies in the approximation,not exact values,exact values,Basics of variational methodology,Obtain a lower bound on the likelihood P(E)by fitting variational parameters,Substitute the

15、se parameters into the parameterized variation form for P(H,E),Utilize the variational form as an efficient inference engine in calculating an approximation to P(H|E),Basics of variational methodology,Sequential approach,Introduce variational transformations for the nodes in a particular order,The g

16、oal is to transform the network until the resulting transformed network is amenable to exact methods,Begin with the untransformed graph and introduce variational transformations one node at a time,Or begin with a completely transformed graph and re-introduce exact conditional probabilities,Basics of variational methodology,The QMR-DT network,Basics of variational methodology,Block approach,

展开阅读全文
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

相关资源

更多
正为您匹配相似的精品文档
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!