AnIntroductiontoVariationalMethodsforGraphicalModels的图形化模型的变分方法的介绍



《AnIntroductiontoVariationalMethodsforGraphicalModels的图形化模型的变分方法的介绍》由会员分享,可在线阅读,更多相关《AnIntroductiontoVariationalMethodsforGraphicalModels的图形化模型的变分方法的介绍(25页珍藏版)》请在装配图网上搜索。
1、按一下以編輯母片標題樣式,按一下以編輯母片,第二層,第三層,第四層,第五層,NTNU Speech Lab,*,An Introduction to Variational Methods for Graphical Models,Michael I.Jordan,Zoubin Ghahramani,Tommi S.Jaakkola and Lawrence K.Saul,報告者:邱炫盛,Outline,Introduction,Exact Inference,Basics of Variational Methodology,Introduction,The problem of proba
2、bilistic inference in graphical models is the problem of computing a conditional probability distribution,Exact Inference,Junction Tree Algorithm,Moralization,Triangulation,Graphical models,Directed(&Acyclic),Bayesian Network,Local conditional probabilities,Undirected,Markov random field,Potentials
3、with the cliques,Exact Inference,Directed Graphical Model,Specified numerically by associating local conditional probabilities with each nodes in the graph,The conditional probability,The probability of node given the values of its parents,Exact Inference,Joint probability:,Directed Graph,Exact Infe
4、rence,Undirected Graphical Model,specified numerically by associating“potentials with the clique of the graph,Potential,A function on the set of configurations of a clique(that is,a setting of values for all of the nodes in the clique),Clique,(Maximal)complete subgraph,Exact Inference,Undirected Gra
5、ph,Joint probability:,Partition function,Exact Inference,The junction tree algorithm compiles directed graphical models into undirected graphical models,Moralization,Triangulation,Moralization,Convert the directed graph into an undirected graph(skip when undirected graph),The variables do not always
6、 appear together within a clique,“marry the parents of all of the nodes with undirected edges and then drop the arrows(moral graph),Exact Inference,Triangulation,Take a moral graph as input and produces as output an undirected graph in which additional edges(possibly)been added(allow recursive calcu
7、lation),A graph is not triangulated if there are 4-cycles which do not have a chord,Chord,An edge between non-neighboring nodes,Exact Inference,4-cycle Graph,ABD,BCD,BD,Exact Inference,Once a graph has been triangulated,it is possible to arrange cliques of the graph into a data structure known as a
8、junction tree,Running intersection property,If a node appears in any two cliques in the tree,it appears in all cliques that lie on the path between the two cliques(the cliques assign the same marginal probability to the nodes that they have in common),Local consistency implies global consistency in
9、a junction tree because of running intersection property,Exact Inference,The QMR-DT database,A diagnostic aid for internal medicine,Basics of variational methodology,Variational methods,used as approximation methods,convert a complex problem into a simpler problem,The decoupling achieved via an expa
10、nsion of the problem to include additional parameters,The terminology“variational comes from the roots of the techniques in the calculus of variation,Basics of variational methodology,Example:logarithm,:variational parameter,If changes,the family of such lines forms an upper envelope of the logarith
11、m function,So,The minimum over these bounds is the exact value,Basics of variational methodology,Basics of variational methodology,Example:logistic regression model,Logistic concave,So,Basics of variational methodology,Then,take the exponential of both sides,Finally,Basics of variational methodology
12、,Convex duality,A concave function can be represented via a conjugate or dual function,Upper bound,Non-linear bound,Basics of variational methodology,To summarize,if the function is already convex or concave then we simply calculate the conjugate function or then we look for an invertible transforma
13、tion that render the function convex or concave if the function is not convex or concave,Basics of variational methodology,Approximation for joint and conditional probabilities,Consider directed graph and upper bound,Let E and H are disjoint,treat right side as a function to be minimized with respec
14、t,The best global bounds are obtained when the probabilistic dependencies in the distribution are reflected in dependencies in the approximation,not exact values,exact values,Basics of variational methodology,Obtain a lower bound on the likelihood P(E)by fitting variational parameters,Substitute the
15、se parameters into the parameterized variation form for P(H,E),Utilize the variational form as an efficient inference engine in calculating an approximation to P(H|E),Basics of variational methodology,Sequential approach,Introduce variational transformations for the nodes in a particular order,The g
16、oal is to transform the network until the resulting transformed network is amenable to exact methods,Begin with the untransformed graph and introduce variational transformations one node at a time,Or begin with a completely transformed graph and re-introduce exact conditional probabilities,Basics of variational methodology,The QMR-DT network,Basics of variational methodology,Block approach,
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 化妆品美妆产品介绍自然之选清新护肤
- 心理健康情绪管理主题班会我的情绪小怪兽
- 慢性病宣传慢性肾脏病防治如何预防和管理慢性肾脏病
- 深入学习2025最高人民法院工作报告
- 孩子如何合理使用DeepSeek(AI仅辅助不可让渡创造力)
- 肝病健康知识宣讲甲型肝炎及戊型肝炎传播和预防
- 慢性肾脏病知识宣传慢性肾脏病的危害
- 315消费者权益日共筑满意消费
- 世界睡眠日健康睡眠知识科普睡眠是维持生命健康的重要源泉
- 深入学习2025政府工作报告要点双语版
- 初中语文作文素材:100个描写外貌佳句
- 初中语文古诗词鉴常考题型及答题技巧
- 初中语文作文素材:9个落笔即封神的议论文作文论据
- 初中资料:学好语文的方法及技巧
- 初中语文作文素材:经典格言总结