高一数学二次函数在闭区间上的最值公开课--优质获奖比赛ppt课件



《高一数学二次函数在闭区间上的最值公开课--优质获奖比赛ppt课件》由会员分享,可在线阅读,更多相关《高一数学二次函数在闭区间上的最值公开课--优质获奖比赛ppt课件(26页珍藏版)》请在装配图网上搜索。
1、单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,
2、第四级,第五级,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,二次函数在闭区间上的最值,高中数学,二次函数在闭区间上的最值 高中数学,例,1,、已知函数,f(x)=x,2,2x 3.,(,1,)若,x 2,,,0,求函数,f(x),的最值;,1,0,x,y,2,3,例1、已知函数f(x)=
3、x22x 3.10 xy2 3,例,1,、已知函数,f(x)=x,2,2x 3.,(,1,)若,x 2,,,0,,求函数,f(x),的最值;,1,0,x,y,2,3,4,1,(,2,)若,x 2,,,4,,求函数,f(x),的最值;,例1、已知函数f(x)=x2 2x 3.10 xy2,例,1,、已知函数,f(x)=x,2,2x 3.,(,1,)若,x,2,,,0,,求函数,f(x),的最值;,(,2,)若,x,2,,,4,,求函数,f(x),的最值;,y,1,0,x,2,3,4,1,(,3,)若,x,求,函数,f(x),的最值;,例1、已知函数f(x)=x2 2x 3.y10 x2,例,1,
4、、已知函数,f(x)=x,2,2x 3,(,1,)若,x,2,,,0,,求函数,f(x),的最值;,(,2,)若,x,2,,,4,,求函数,f(x),的最值;,(,3,)若,x,,求函数,f(x),的最值;,1,0,x,y,2,3,4,1,(,4,)若,x,,,求函数,f(x),的最值,;,例1、已知函数f(x)=x2 2x 310 xy2 3,1,0,x,y,2,3,4,1,(,5,)若,x,t,,,t+2,时,,求函数,f(x),的最值,.,t,t+2,例,1,、已知函数,f(x)=x,2,2x 3.,(,1,)若,x,2,,,0,求函数,f(x),的最值;,(,2,)若,x,2,,,4,
5、,求函数,f(x),的最值;,(,3,)若,x,,求函数,f(x),的最值;,(,4,)若,x,,求,函数,f(x),的最值;,10 xy2 34 1(5)若 xt,t+2时,t,1,0,x,y,2,3,4,1,t,t+2,例,1,、已知函数,f(x)=x,2,2x 3.,(,1,)若,x,2,,,0,求函数,f(x),的最值;,(,2,)若,x,2,,,4,,求函数,f(x),的最值;,(,3,)若,x,,求函数,f(x),的最值;,(,4,)若,x,,求,函数,f(x),的最值;,(,5,)若,x,t,,,t+2,时,,求函数,f(x),的最值,.,10 xy2 34 1 tt+2例1、已
6、知函数f(x)=,1,0,x,y,2,3,4,1,t,t+2,例,1,、已知函数,f(x)=x,2,2x 3.,(,1,)若,x,2,,,0,求函数,f(x),的最值;,(,2,)若,x,2,,,4,,求函数,f(x),的最值;,(,3,)若,x,,求函数,f(x),的最值;,(,4,)若,x,,求,函数,f(x),的最值;,(,5,)若,x,t,,,t+2,时,,求函数,f(x),的最值,.,10 xy2 34 1 tt+2例1、已知函数f(x)=,1,0,x,y,2,3,4,1,t,t+2,例,1,、已知函数,f(x)=x,2,2x 3.,(,1,)若,x,2,,,0,求函数,f(x),的
7、最值;,(,2,)若,x,2,,,4,,求函数,f(x),的最值;,(,3,)若,x,,求函数,f(x),的最值;,(,4,)若,x,,求,函数,f(x),的最值;,(,5,)若,x,t,,,t+2,时,,求函数,f(x),的最值,.,10 xy2 34 1 tt+2例1、已知函数f(x)=,1,0,x,y,2,3,4,1,t,t+2,例,1,、已知函数,f(x)=x,2,2x 3.,(,1,)若,x,2,,,0,求函数,f(x),的最值;,(,2,)若,x,2,,,4,,求函数,f(x),的最值;,(,3,)若,x,,求函数,f(x),的最值;,(,4,)若,x,,求,函数,f(x),的最值
8、;,(,5,)若,x,t,,,t+2,时,,求函数,f(x),的最值,.,10 xy2 34 1 tt+2例1、已知函数f(x)=,评注,:,例,1,属于“,轴定区间变,”的问题,看作动区间沿,x,轴移动的过程中,函数最值的变化,即动区间在定轴的左、右两侧及包含定轴的变化,要注意开口方向及端点情况。,1,0,x,y,2,3,4,1,t,t+2,评注:例1属于“轴定区间变”的问题,看作动区间沿x轴移动的过,例,2,、求函数,f(x)=ax,2,2a,2,x+1(a0),在区间,1,,,2,上的最值,.,1,0,x,y,2,1,例2、求函数f(x)=ax22a2x+1(a0)在区间1,例,2,、求
9、函数,f(x)=ax,2,2a,2,x+1(a0),在区间,1,,,2,上的最值,.,1,0,x,y,2,1,例2、求函数f(x)=ax22a2x+1(a0)在区间1,例,2,、求函数,f(x)=ax,2,2a,2,x+1(a0),在区间,1,,,2,上的最值,.,1,0,x,y,2,1,例2、求函数f(x)=ax22a2x+1(a0)在区间1,例,2,、求函数,f(x)=ax,2,2a,2,x+1(a0),在区间,1,,,2,上的最值,.,1,0,x,y,2,1,例2、求函数f(x)=ax22a2x+1(a0)在区间1,1,0,x,y,2,1,1,0,x,y,2,1,例,2,、求函数,f(x
10、)=ax,2,2a,2,x+1(a0),在区间,1,,,2,上的最值,.,10 xy2 1 10 xy2 1 例2、求函数f(x),1,0,x,y,2,1,1,0,x,y,2,1,例,2,、求函数,f(x)=ax,2,2a,2,x+1(a0),在区间,1,,,2,上的最值,.,10 xy2 1 10 xy2 1 例2、求函数f(x),评注,:,例,2,属于“,轴变区间定,”的问题,看作对称轴沿,x,轴移动的过程中,函数最值的变化,即对称轴在定区间的左、右两侧及对称轴在定区间上变化情况,要注意开口方向及端点情况。,1,0,x,y,2,1,1,0,x,y,2,1,评注:例2属于“轴变区间定”的问题
11、,看作对称轴沿x轴移动的过,例,3,、已知函数,f(x)=x,2,+ax+b,,,x0,1,,,试确定,a,、,b,使,f(x),的值域是,0,1.,1,0,x,y,2,1,例3、已知函数f(x)=x2+ax+b,x0,1,10,例,3,、已知函数,f(x)=x,2,+ax+b,,,x0,1,,,试确定,a,、,b,使,f(x),的值域是,0,1.,1,0,x,y,2,1,例3、已知函数f(x)=x2+ax+b,x0,1,10,例,3,、已知函数,f(x)=x,2,+ax+b,,,x0,1,,,试确定,a,、,b,使,f(x),的值域是,0,1.,1,0,x,y,2,1,例3、已知函数f(x)
12、=x2+ax+b,x0,1,10,例,3,、已知函数,f(x)=x,2,+ax+b,,,x0,1,,,试确定,a,、,b,使,f(x),的值域是,0,1.,1,0,x,y,2,1,例3、已知函数f(x)=x2+ax+b,x0,1,10,例,3,、已知函数,f(x)=x,2,+ax+b,,,x0,1,,,试确定,a,、,b,使,f(x),的值域是,0,1.,1,0,x,y,2,1,例3、已知函数f(x)=x2+ax+b,x0,1,10,总结,:求二次函数,f(x)=ax,2,+bx+c,在,m,,,n,上,的最值或值域的一般方法是:,(,2,)当,x,0,m,,,n,时,,f(m),、,f(n),、,f(x,0,),中的较大者是最大值,较小者是最小值;,(,1,)检查,x,0,=,是否属于,m,,,n,;,(,3,)当,x,0,m,,,n,时,,f(m),、,f(n),中的较大,者是最大值,较小者是最小值,.,总结:求二次函数f(x)=ax2+bx+c在m,n上(2,谢谢各位光临指导,谢谢各位光临指导,再见,再见,
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。