八年级数学下册证明课件



《八年级数学下册证明课件》由会员分享,可在线阅读,更多相关《八年级数学下册证明课件(23页珍藏版)》请在装配图网上搜索。
1、单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,八年级数学(下册)第六章 证明,(,一,),4,如果两条直线平行,义务教育课程标准实验教科书北师大教材,八年级数学(下册)第六章 证明(一)4 如果两条直线平行义,1,学习目标,1.,经历探索平行线的性质定理的证明,增强观察、分析和进行简单的逻辑推理的能力,.,2.,能结合图形用符号语言来表示平行线性质公理及定理的条件和结论,并能总结归纳出证明的一般步骤,.,学习目标1.经历探索平行线的性质定理的证明,增强观察、分析和,2,1.,公理,:,人们在长期实践中总结出来的,,并作为判定其他命题真假的根据,.,2.
2、,定理,:,用推理的方法得到的真命题,.,3.,证明,:,除公理外,一个命题的正确性需要经过推理,才能作出判断,这个推理的过,程叫做证明,.,1.公理:人们在长期实践中总结出来的,2.定理:用,3,平行线的,性质,公理,:,两条平行线被第三条直线所截,同位角相等。,两直线平行,同位角相等,.,a,b,c,2,1,平行线的性质公理:abc21,4,例,1.,已知:如图,,ab,1,和,2,是直线,a,b,被直线,c,截出的内错角。,求证:,1=2,1,2,3,a,b,c,证明:,ab(),3=2,(),3=1(),1=2 (),已知,两直线平行,同位角相等,对顶角相等,等量代换,例1.已知:如图
3、,ab,1和2是直线a,b123ab,5,定理,1,两条平行线被第三条直线所截,,内错角相等。,简说成:,两直线平行,内错角相等。,定理1,6,例,2.,已知:如图,,ab,1,和,2,是直线,a,b,被直线,c,截出的同旁内角。求证:,1+2=180,0,a,b,c,1,2,方法一:,证明:,ab(,已 知,),2=3,1+3=180,0,(,1,平角,=180,),1+2=180,0,(,等量代换),.,3,(,两直线平行,同位角相等),.,例2.已知:如图,ab,1和2是直线a,b被直线c,7,方法二:,证明:,a,b,(已知),3=2,(),1+3=180,(,1,平角,=180,),
4、1+2=180,(等量代换),两直线平行,内错角相等。,方法二:两直线平行,内错角相等。,8,定理,2,两条平行线被第三条直线所截,,同旁内角互补。,简说成:,两直线平行,同旁内角互补。,定理2,9,命题证明的步骤:,1.,根据题意,,画出图形,;,2.,根据题设、结论,结合图形,,写出,已知、求证,;,3.,经过分析,找出由已知推出求证的,途径,,写出证明过程,.,八年级数学下册证明课件,10,平行线的性质,公理,:,两直线平行,同位角相等。,ab,1=2,.,性质,定理,1,:,两直线平行,内错角相等,.,ab,1=2.,性质,定理,2,:,两直线平行,同旁内角互补,.,ab,,,1+2=
5、180,0,.,a,b,c,2,1,a,b,c,1,2,a,b,c,1,2,平行线的性质公理:性质定理1:性质定理2:abc21abc1,11,练习,1.,根据下列命题,画出图形,并结,合图形写出已知、求证,(,不写证明过程,),:,1),垂直于同一直线的两直线平行;,2),一个角的平分线上的点到这个角的两,边的距离相等;,3),两条平行线的一对内错角的平分线互,相平行,.,练习1.根据下列命题,画出图形,并结,12,练习,1.,根据下列命题,画出图形,并结,合图形写出已知、求证,(,不写证明过程,),:,1),垂直于同一直线的两直线平行;,已知:,直线,ba,ca,a,b,c,求证:,bc,
6、练习1.根据下列命题,画出图形,并结 已知:直线ba,13,根据下列命题,画出图形,并结合图形,写出已知、求证,(,不写证明过程,),:,2),一个角的平分线上的点到这个角的两边,的距离相等;,A,B,O,C,E,F,G,已知:,如图,,OC,是,AOB,的平分线,,EFOA,于,F,EGOB,于,G,求证:,EF=EG,根据下列命题,画出图形,并结合图形ABOCEFG已知:如,14,根据下列命题,画出图形,并结合图形,写出已知、求证,(,不写证明过程,),:,3),两条平行线的一对内错角的平分线互相,平行,.,A,B,C,D,E,F,G,H,已知:,如图,,AB,、,CD,被直线,EF,所截
7、,且,ABCD,,,EG,、,FH,分别是,AEF,和,EFD,的平分线,求证:,EGFH,根据下列命题,画出图形,并结合图形ABCDEFGH已知:,15,练习,2,:证明邻补角的平分线互相垂直,.,已知:,如下图,,AOB,、,BOC,互为邻补角,,OE,平分,AOB,,,OF,平分,BOC.,求证:,OEOF.,证明:,OE,平分,AOB.,OF,平分,BOC,(已知),EOB=AOE,,,BOF=FOC,(角平分线定义),AOB+BOC=180,(,1,平角,=180,),EOB+BOF=,(,AOB+BOC,),=90,(等式的性质),即,EOF=90,OEOF,(垂直的定义),练习2
8、:证明邻补角的平分线互相垂直.,16,练习,3,:在图中,由,AB,/CD,,,EG,平分,MEB,,,FH,平分,MFD,,可以证明哪两条直线平行?,答:,EG,FH,理由如下:,AB,/CD,,(已知),MEB=MFD(,两直线平行,同位角相等),.,EG,平分,MEB.,FH,平分,MFD,(已知),MEG=MEB,,,MFH=MFD,(角平分线定义),MEG=MFH(,等量代换),EG,FH,(,同位角相等,两直线平行),练习3:在图中,由AB/CD,EG平分MEB,答:EG,17,练习,4,:如图,直线,l,m.,根据图中标,出的角的度数,求出,1,、,2,度数,.,l,m,2,3,
9、1,43,100,1=80,0,2=57,0,练习4:如图,直线lm.根据图中标lm23143100,18,练习,5,如图:,a,/b,m/n,1=110,则,2=_ 3=_ 4=_,70,0,110,0,70,0,练习5 如图:a/b,m/n,1=110,则70,19,练习,6,如图:,已知直线,AB,CD,MEB=55,求,MFD,的度数。,练习,7,如图,已知:直线,a,b,,,cd,,,1=115,求:,2,、,3,的度数,MFD=55,0,2=115,0,3=115,0,练习6 如图:练习7 如图MFD=5502=115,20,练习,8,、已知如图,,AB,DF,2=A.,求证:,4=5,一位同学的证明如下:,证明:,AB,DF(,已知),2=4,(,两直线平行,内错角相等,),DEAC(,由图看出),2=5,(,两直线平行,内错角相等,),4=5,。,上面的证明有没有错误?若有错误,请改正。,x,练习8、已知如图,ABDF,2=A.一位同学的证明如下,21,本课小结,命题证明的步骤:,1.,根据题意,,画出图形,;,2.,根据题设、结论,结合图形,,写出,已知、求证,;,3.,经过分析,找出由已知推出求证的,途径,,写出证明过程,.,本课小结命题证明的步骤:,22,作业:,P,236,习题,6.5 1,、,2,、,3,题,作业:P236习题6.5 1、2、3题,23,
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年水电工程运行维护管理合同示范文本.docx
- 2025年工程勘测设计合同模板.docx
- 2025年区域产品销售代理合同.docx
- 2025年经销商授权合同样本.docx
- 2025年员工住房资金借贷合同.docx
- 2025年轻钢建筑施工合同示例.docx
- 2025年网络推广托管合同.docx
- 2025年简明个人借款正式合同范例.docx
- 2025年房产按揭贷款合同范例.docx
- 2025年技术合同争议调解.docx
- 2025年电子版城市住宅租赁合同范本.docx
- 2025年简易转让合同协议书样本.docx
- 2025年投资顾问服务合同实例.docx
- 2025年经销合同模板.docx
- 2025年工业项目设计合同样本.docx