高中数学知识梳理与解题指要

上传人:nu****n 文档编号:252966792 上传时间:2024-11-26 格式:PPT 页数:57 大小:280KB
收藏 版权申诉 举报 下载
高中数学知识梳理与解题指要_第1页
第1页 / 共57页
高中数学知识梳理与解题指要_第2页
第2页 / 共57页
高中数学知识梳理与解题指要_第3页
第3页 / 共57页
资源描述:

《高中数学知识梳理与解题指要》由会员分享,可在线阅读,更多相关《高中数学知识梳理与解题指要(57页珍藏版)》请在装配图网上搜索。

1、单击此处编辑母版标题样式,,单击此处编辑母版文本样式,,第二级,,第三级,,第四级,,第五级,,,*,高中数学知识梳理,,,与,解题指要,,二○○五年四月九日,,尤善培,,一、数学高考介绍,二、数学知识梳理,三、数学试题简析,四、数学解题指要,,,(’,99,全国,),向高为,H,的水瓶中注水,,,注满为止,如果注水量,V,与水深,h,的,,函数关系的图象如右图所示,那么,,水瓶的形状是(,,),,一、高考数学命题的特点与要求,高考数学命题的特点,B,位置,↔,数值,,h,,H,V,V,0,,O,,f,(,,),= =,f,,(,,x,,)+,f,,( )=

2、1.,(2002,全国)已知函数,f,(,x,)=,,,则,,f,(,,1,,)+,f,(,,2,,)+,f,( )+,f,(,,3,,)+,f,( )+,f,(,,4,,)+,,,f,( )= .,结构特征,,高考数学是考查数学基础的考试,①基础知识,,②基本技能,,③基本数学思想方法,,a、数形结合(转换策略),,b、函数与方程(分析策略),,c、分类讨论(分解策略),,d、等价转换(分析策略),,,①在高考数学命题中,经历了“以知识立意”到以“问题立意”,再发展为“以能力立意”的过程。,,②以能力立意命题,保障了高考突

3、出能力与学习 潜能考查的要求。,,③以能力立意命题拓展了命题思路。,,④以能力立意命题于题型设计,易于形成综合自 然、新颖脱俗的试题。,,⑤以能力立意命题在全卷的整合时,对试题的整体布局、层次安排有高屋建瓴之势。。,,⑥以能力立意命题促进了高考改革的深入发展。,高考数学注重能力考查,,,(,’,2001,全国),如图,小圆圈表示网络的结点,结点之间的连线表承它们有网线相联.连线标注的数字表示该段网线单位时间内可以通过的最大信息量.现从结点,A,向结点,B,传递信息,信息可以分开沿不同的路线同时传递.则单位时间内传递的最大信息量为,( ),°,°,°,°,°,°,°,°,

4、A,B,12,12,6,6,6,8,3,4,5,7,A. 26 B. 24 C. 20 D. 19,3+4+6+6=19,D,高考数学对难度和速度均有要求,,木 桶 原 理,,知识要求,,①了解,,②理解和掌握,,③灵活和综合运用,,能力要求,,①思维能力,,②运算能力,,③空间想像能力,,④实践能力,,⑤创新意识,,个性品质要求,,高考数学的要求,,二、高考数学知识梳理与复习,高考数学知识梳理,,平面向量,①理解向量的概念,掌握向量的几何表, 了解共线向量的概念。,②掌握向量的加法与减法。,③掌握实数与向量的积,理解两个向量 共线的充要条件。,,

5、,④了解平面向量的基本定理,理解平面向量 的坐标的概念,掌握平面向量的坐标运算。,,⑤掌握平面向量的数量积及其几何意义,了 解用平面向量的数量积可以处理有关长度、 角度和垂直的问题,掌握向量垂直的条件。,,⑥掌握平面两点间的距离公式,以及线段的 定比分点和中点坐标公式,并且能熟练运 用、掌握平移公式。,,①理解集合、子集、补集、交集、并集的 概念。了解空集和全集的意义。了解属 于、包含、相等关系的意义。掌握有关 的术语和符号,并会用它们正确表示一 些简单的集合。,,②理解逻辑联结词“或”、“且”、“非” 的含义。理解四种命题及其相互关系,掌 握充分条件

6、、必要条件及充要条件的意 义。,,集合、简易逻辑,,函数,①了解映射的概念,理解函数的概念。,,②了解函数单调性、奇偶性的概念,掌握判,,断一些简单函数的单调性、奇偶性的方法。,,③了解反函数的概念及互为反函数的函数图 像间的关系,会求一些简单函数的反函数。,,④理解分数指数幂的概念,掌握有理指数幂 的运算性质。掌握指数函数的概念、图象 和性质。,,⑤理解对数的概念,掌握对数的运算性质, 掌握对数函数的概念、图像和性质。,,⑥能够运用函数的性质、指数函数和对数函 数的性质解决某些简单的实际问题。,,,①理解不等式的性质及其证明。,,②掌握两个(不扩展到三个)正数

7、的算术 平均数不小于它们的几何平均数的定 理,并会简单的应用。,,③掌握分析法、综合法、比较法证明简单 的不等式。,,④掌握简单不等式的解法。,,⑤理解不等式,,∣,a∣- ∣ b∣≤∣a+b∣≤∣a∣+∣b∣,不等式,,①理解任意角的概念、弧度的意义,能正 确地进行弧度与角度的换算。,,②掌握任意角的正弦、余弦、正切的定 义。了解余切、正割、余割的定义 ,掌 握同角三角函数的基本关系式:,sin,2,α+cos,2,α=1,, ,,tanαcotα=1,。,,,掌握正弦、余弦的诱导

8、公式。了解周期 函数与最小正周期的意义。,,③掌握两角和与两角差的正弦,、,余弦,、,正切,公式,。,掌握二倍角的正弦,、,余弦,、,正切公式,。,三角函数,,④能正确运用三角公式,进行简单的三角函 数式的化简、求值和恒等式证明。,,⑤了解正弦函数、余弦函数、正切函数的图 像和性质,会用“五点法”画正弦函数、 余弦函数和函数,y=,Asin,(ωx+ψ),的简图, 理解,A、ω、ψ,的物理意义。,,⑥会由已知三角函数值求角,并会用符号,arcsinx,、,arccosx,、,arctanx,表示。,,⑦掌握正弦定理、余弦定理,并能初步运用

9、它们解斜三角形。,,①理解数列的概念,了解数列通项公式的 意义,了解递推公式是给出数列的一种 方法,并能根据递推公式写出数列的前 几项。,,②理解等差数列的概念,掌握等差数列的 通项公式与前,n,项和公式,并能解决简单 的实际问题。,,③理解等比数列的概念,掌握等比数列的 通项公式与前,n,项和公式,并能解决简单 的实际问题。,,数列,,①理解直线的倾斜角和斜率的概念,掌握过 两点的直线的斜率公式。掌握直线方程的 点斜式、两点式、一般式,并能根据条件 熟练

10、地求出直线方程。,,②掌握两条直线平行与垂直的条件,两条直 线所成的角和点到直线的距离公式。能够 根据直线的方程判断两条直线的位置关 系。,,③了解二元一次不等式表示平面区域。,,直线和圆的方程,,④了解线性规划的意义,并会简单的应用。,,⑤了解解析几何的基本思想,了解坐标法。,,⑥掌握圆的标准方程和一般方程,理解圆的 参数方程。,,①掌握椭圆的定义、标准方程和椭圆的简 单几何性质。理解椭圆的参数方程。,,②掌握双曲线的定义、标准方程和双曲线,,的简单几何性质。,,③掌握抛物线的定义、标准方程和抛物线 的简单几何性质

11、。,,④了解圆锥曲线的初步应用。,,圆锥曲线方程,,①掌握平面的基本性质,会作斜二测的画 法画水平放置的平面图形的直观图;能 够画出空间两条直线、直线和平面的各 种益关系的图形,能够根据图形想像它 们的位置关系。,,②掌握直线和平面平行的判定定理和性质 定理;掌握直线和平面垂直的判定定 理;掌握三垂线定理及其逆定理。,,③理解空间向量的概念,掌握空间向量的 加法、减法和数乘。,,,,直线、平面、简单几何体,,④了解空间向量的基本定理;理解空间向量 坐标的概念,掌握空间向量的坐标运算。,,⑤

12、掌握空间向量的数量积的定义及其性质; 掌握用直角坐标计算空间向量数量积的,,公式;掌握空间两点间距离公式。,,⑥理解直线的方向向量、平面的法向量、向 量在平面内的射影等概念。,,⑦掌握直线和直线、直线和平面、平面和平 面所成的角、距离的概念。,,,⑧了解多面体、凸多面体的概念,了解正多 面体的概念。,,⑨了解棱柱的概念,掌握棱柱的性质,会画 直棱柱的直观图。,,⑩了解棱锥的概念,掌握正棱锥的性质,会 画正棱锥的直观图。,,,11,了解球的概念,掌握球的性质,掌握球的 表面积、体积公式,○,,,,①掌握分类计数原理与分步计数原理,并

13、 能用它们分析和解决一些简单的应用问 题。,,②理解排列的意义,掌握排列数计算公 式,并能用它解决一些简单的应用问题。,,③理解组合的意义,掌握组合数计算公式和 组合数的性质,并能用它们解决一些简单 的应用问题。,,④掌握二项式定理和二项展开式的性质,并 能用它们计算和证明一些简单的问题。,,排列、组合、二项式定理,,①了解随机事件的发生存在着规律性的随 机事件概率的意义。,,②了解等可能性事件的概率的意义,会用 排列组合的基本公式计算一些等可能性 事件的概率。,,③了解互斥事件

14、与相互独立事件的意义, 会用互斥事件的概率加法公式与相互独 立事件的概率乘法公式计算一些事件的 概率。,,④会计算事件在,n,次独立重复试验中恰好发 生,k,次概率。,概率,,①了解随机抽样,了解分层抽样的意义, 会用它们对简单实际问题进行抽样。,,②会用样本频率分布估计总体分布。,,③会用样本估计总体期望值和方差。,,统计,,①了解导数概念的实际背景。,,②理解导数的几何意义。,,③掌握函数,y=c,(,C,为常数),、,y=,x,n,(n∈N,+,),,的导数公式,会求多项式函数的导数。,,④理解极大值,、,极小值,、,

15、最大值,、,最小值的 概念,,,并会用导数求多项式函数的单调区 间,、,极大值,、,极小值及闭区间上的最大值 和最小值。,,⑤会利用导数求某些简单实际问题的最大 值和最小值。,,导数,,设函数,f,(,x,),的导数为,f,(,x,),,,且,f,(,x,)=,x,3,+2,x,f,,(1),,则,f,(0)= ( ) A. 0 B. -3 C. -6 D. 6,关键,,理解,f,(1

16、),是常量,,∵,f,(,x,),=3,x,2,+2,f,(1),,,∴,f,(0),=2,f,(1).,,①,,又,,f,(1),=3+2,f,(1),,∴,f,(1)=-3.,代入,,①,式,,得,f,(0)=-6.,,高考复习“四字诀”,实:小处不可随便,,活:海阔凭鱼跃,,①解题后的再思考,,例 求证,:,,sin(nπ+θ),cos,(nπ-θ)= sin2θ,(n∈z),,,它的通常解法是:,,证明:,,,(,1,)当,n,为偶数时,设,n=2k(k∈z),,sin(nπ+θ),cos,(nπ-θ),,= sinθ,cos,θ = sin2θ,,

17、,1,2,1,2,,(2)当,n,为奇数时,设,n=2k+1(n∈z),,sin(nπ+θ),cos,(nπ-θ =sin(2kπ+π+θ)·,cos,(2kπ+π-θ),,=,(-sinθ)(-,cos,θ)= sin2θ,,,综上得:,sin(nπ+θ),cos,(nπ-θ)= sin2θ,,,无论是,n,为偶数,还是,n,为奇数,都有:,sin(nπ+θ),cos,(nπ-θ)= sin2θ,,,,,这就引起了我们的再思考。,,思考:上面的讨论是雷同的,是否可以回避,?,1,2,1,2,1,2,,②深层次挖掘教材,,如:,{,a,n,},为等差数列,,a

18、,1,、a,2,、a,9,成等比数列,,则,,,题目的来源:选择特殊数列为背景,最常 见、最先想到的是自然数列,易知它满足条 件,所以选,a,n,=n。,,再如函数这一部分,复习时可对,y=,和,y=,log,a,x,的图象和性质进行研究。,,,广:天高任鸟飞,,①全面复习,知识和能力并重,,②学会学习,,新:万变不离其宗,,①“旧题”新解,追求优美,,,例如:过抛物线,y,2,=x,上一点(,4,2,),作倾,,角互补的两条直线,AB、AC,交抛物线,B、C,,求证:直线,BC,的斜率为定值。,,思考: 按照与作图步骤相吻合的思路来求解。,,,解:设,K,AB,=K,,则,,K,A

19、C,=-K,AB,的方程为,y=k(x-4)+2,,,因此,,,A(4,2),B(X,B,,Y,B,),是方程组,,的解。,,y,2,=x,,y=k,(x-4)+2,解之得,X,B,=,·,(4,k,2,-4k+1),Y,B,=,同样的方法可得,X,C,=,,,,,Y,C,=,可求得,K,BC,=,,再思考:在解题过程中,求,B,点坐标的计算量比较 大,应该想办法改进。,我们还再回顾一下原来的解题程序。,,设,K,AB,→,写直线,AB、AC,的方程→解出,B、C→,表示,K,BC,改进:先设,B、C,坐标。,,改进后的程序为:,,设,B、C,坐标→求出,K,AB,、K,AC,

20、→,表示,K,BC,,设,B( ,t,2,),C( ,t,2,)(∣t,1,∣≠∣t,2,∣),,这时,K,AB,= , K,AC,=,,∵K,AB,=-K,AC,,,即,x,0,A,B,C,y,,化简得:,t,1,+2= -(t,2,+2),,下面怎么办?似乎迷失了方向。我们还是 应该明确一下本题的目标。要证明,K,BC,是 一个定值,于是不妨先求出,K,BC,,K,BC,=,这就好了,原来是要证明,t,1,+t,2,是定值。,,这样,就自然想到将,t,1,+2=-(t,2,+2),变形为,t,1,+t,2,= - 4,,本题圆满获得解决。,再改进

21、,:,设,B、C,坐标→表示,K,BC,→,求出,K,AB,、K,AC,②看透本质,新题通法。,,,“知识与技能”突出思想和智慧,,程序性,,主干性,,这里的技能特性也有两点:,,独立操作性:由重复再现过渡到独立 完成;,,,迁移性:通过联系的思想与转换的手 段达到灵活运用、举一反三和触类旁 通的目的。,,三、去年高考数学试题的亮点,,例,1,(高考第一题第,6,小题)某校为了了解学生的课外 阅读情况,随机调查了,50,名学生,得到他们在某 一天各自课外阅读所用时间

22、的数据,结果用图形 表示,根据条形图可得这,50,名学生这一天平均每 人的课外阅读时间为,,,A、0.6,小时,,,B、0.9,小时,,,C、1.0,小时,,,D、1.5,小时,,,,解析 一天平均每人课外阅读时间为,,,=,0.9,(小时),,故选,B。,,时间(小时),,0 0.5 1.0 1.5 2.0 x,,y,,20,,15,,10,,5,,人数(人),,,例2,(,高考第一题第,8,小题)设,k>1,f(x)=k(x-1),(x∈R)。,在平面直角坐标系,xOy,中,函数,y=f(x),的图象与,x,轴

23、变于,A,点,它的反函数,,,y=f,-1,(x),的图象与,y,轴交于,B,点,并且这两个函,,数的图象交于,P,点,已知四边形,OAPB,的面积是,,3,则,k,等于( ),,,A、,3,,,B、,,C、,,D、,0,1,,A,x,y,,,,,,1,,B,p,,解析,:,依题意,A(1,0),B(0,1), y=f(x),与,y=f,-1,(x),的交点必在 直线,y=x,上。,,由,y=k(x-1),,,y=x,,,解得:,x=,,,因为,S,四边形,OAPB,=2S,△OPA,=2,·,,∣,OA,∣,·,∣,x,p,∣,= =3,,,,

24、所以,k= 。,,,故此选,B,,“过程与方法”重视价值和策略,,例,3 (,高考第二题第,16,小题,),平面向量,a,、,b,,,中,已知,a,=(4,-3),∣,b,∣=1,且,a,·,b,=5,,则向量,b,=,,。,[方法,1] 设,a,与,b,夹角为,θ。,,,则由,a,·,b,=5→∣,a,∣∣,b,∣cosθ=5,,→5·1·cosθ=5,,→,cos,θ=1,,→θ=0,º,,,所以,b,与,a,共线且方向相同,,,,b,=( ,-,),。,解析 解决本题至少可从这样两个角度思考,,[,方法,2] 设,b,=(x,y),,x,2,+y,2,=1

25、 x=,,4x-3y=5 y= -,,或利用直线,4,x-3y=5,与圆,x,2,+y,2,=1,相切的特征,借助几何图形,利用几何方法,求得切点坐标为( ,,-,),,b,=( ,- ),则,→,,“情感、态度与价值观”体现感悟和动力,,例4(高考第六大题)制订投资计划时, 不仅要考虑可能获得的盈利,而且要考 虑可能出现的亏损。,,某投资人打算投资甲、乙两个项目,根 据预测,甲、乙项目可能的最大利率分别 为,100%为50%,,可能的最大亏损率分别为 30,%和10%,,投资人计划

26、投资金额超过10 万元,要求确保可能的资金亏损不超过,1.,8 万元。问投资人对甲、乙两个项目各投资 多少万元,才能使可能的盈利最大?,,,解析 设投资人分别用,x,万元,,y,万元投资甲、乙两个项目,由题意知,,x+y≤10,,,0.3X+0.1y≤1.8,,,x≤0,,,y≥0.,,目标函数,z=x+0.5y.,,上述不等式组表示的平面区域如图所示,阴影部分(含边界)即可行域。,,作直线,L:x+0.5y=0,,并作平行于直线,L,的一组直线。,,X+0.5y=z,z∈R,,与可行域相交,其中有一条直线经过可行域上的,M,点,且与直线,x+0.5y=0,的距

27、离最大,,这里,M,点是直线,x+y=10,和0.3,x+0.1y=1.8,的交点。,Y,,,18,,,10,,0 6 10 x,,0.3x+0.1y=1.8,,x+0.5y=0,M(4,6),,,x+y=10,L,,解方程组,,,x+y=10,,0.3x+0.1y=1.8,,得,x=4,y=6,,此时,z=1×4+0.5×6=7(,万元),,因为,7>0,,,,所以,x=4,y=6,时,z,取最大值。,,答:投资人用,4,万元投资甲项目、,6,万元投 资乙项目,才能在确保亏损不超过,1.,8

28、 万元的前提下,使可能的盈利最大。,,多思善想,,思联系,网络知识,夯实基础,,例,1,α、β,是两个不同的平面,,m、n,是 平面,α,及,β,之外的两条不同直线,给 出四个论断:①,m⊥n,②α⊥β, ③n⊥β,④m⊥α,,以其中三个论 断作为条件,余下一个论断作为结 论,写出你认为正确的一个命题,,。,,四、高考数学复习解题,指,要,,思路,1,:题目结构中,a、b、c,具有轮换对称性, 可将右式分为三个部分,用综合法易证:

29、 (,a+b), (b+c), (a+c),,三式相加即得。,例,2,已知,a>0,b>0,c>0,,求证:,,(,a+b+c),,思多解,多方出击,培养思维的发

30、散性,,是三角函数的特殊值,联系三角知识,可从右边证到左边。,,思路,2,:,(,a+b)=,asin,+,bcos,=,sin(,+φ)≤,(a+c)≤,三式相加即得。,(b+c)≤,,,B,,α,,,a,,,,,b,,A,,c,同理:,≥,(,a+c),,三式相加即得。,思路,3,观察左边三个根式,联系立几知识,它们 是以,a、b、c,为三度的长方体的三个面的对 角线长度,可构造长方体来证明,如图,:,,∣,AB∣,= ,,,a+b=,∣AB∣sinα+∣AB∣,cos,α,,,= (sinα+,cos,α),,=

31、 sin(α+ ),,≤,,所以,≥ (,a+b),,思规律,找变化,触类旁通,例3,试证以过椭圆的焦点的弦为直径的圆必 和椭圆相应的准线相离。,,,例,4,已知异面直线,a,和,b,所成的角为,50º,,P,为   空间任一定点,则,P,点且与,a、b,所成的   角都是,30º,的直线有且仅有 ( ),,,A、1,条,B、2,条,C、3,条,D、4,条,,在本题中,50º和30º,的设置对答案起着重   要作用。因此,可通过改变,50º和30º,的   大小来深化对这类题目的理解。,,,(1)若将50º改为25º,其余条件不变,则答

32、 案是,,。,,(2)若将50º改为65º,其余条件不变,则答 案,,。,,(3)若将30º改为70º,其余条件不变,则答 案是,,。,,(4)若将50º改为,xº,30º,改为,yº,,且答案为,A,,,则,x、y,的关系式为,,;若答案为,B,,则,x、y,的关系为,,;若答案为,C,,则,x、 y,的关系为,,;若答案为,D,,则,x、y,的 关系为,,。,,例5,求和,S=(x+ )+(x,2,+ )+…+(,x,n,+ ),,错解:,,S=(x+x,2,+x,3,+…+,x,n,)+(

33、 + + …+ ),,= +,,这是应用等比数列求和公式时很容易出现的 问题,,,按照等比数列求和公式,,,当公式,q,是一个不确 定的数时,,,求其前,n,项和,,,则要考虑,q=1,q≠1,两种情 况,,,因此应分四种情形求解,:,(1),x=1,y≠1;,,(2)x≠1,y=1;(3)x=1,y=1;(4)x≠1,,y≠1,,思错处,找错因,提高辨别解题错误的能力,,例6,过抛物线,y,2,=2px(p>0),的焦点的一条直线和 这条抛物线相交于,P,1,、P,2,两点,两个交点的

34、 纵坐标分别为,y,1,、y,2,,,求证:,y,1,y,2,=-p,2,,①,已知条件不变时,,,a、,求证:,x,1,x,2,= ;,,b、,求焦点弦∣,P,1,P,2,∣,的长;,,,c、,求△,OP,1,P,2,的面积,;,,,d、,求焦点弦,P,1,P,2,中点的轨迹方程;,,,e、,求证 :,,,f、,求证:以焦点弦为直径的圆必与准线 相切。,,思演变,层层深入,提高应变能力,,②改成逆命题:一条直线与抛物线,y,2,=2px(p>0),,相交于,P,1,(x,1,,y,1,

35、)、,P,2,(x,2,,y,2,),两点,如果 满足,y,1,y,2,=-p,2,(,或,x,1,x,2,= ),,那么这条直线过 抛物线的焦点。,,③已知条件不变,再附加条件“过,P,1,、P,2,分别作,x,,轴的垂线,垂足为,M,1,、M,2,”,,求证: ∣,OM,1,∣、∣OF∣、∣OM,2,∣,成等比数列。,,④已知条件不变,再附加条件“过焦点,F,,再作 一条与,P,1,P,2,垂直的弦,P,3,P,4,”,,求以此两弦为对,,角线的内接四边形的面积的最小值。,,,弄清问题(解题应从弄清问题开始),,①化简策略:从最复杂的地方开刀,,②语言变换策略:用不同的语言重新叙述,,③分析策略:假设问题已经解决,,变换问题,,①联想策略:联想一个熟悉的问题,,②讨论策略:先解决问题的部分,解题策略,,方法,2,:语言变换 数形结合。,,,f(x)=∣x+2∣,g(x)=∣x∣。,方法,1,:讨论 分,x≤-2,-2

展开阅读全文
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

相关资源

更多
正为您匹配相似的精品文档
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!