2014-2015学年高中数学(人教A版必修四) 第二章 平面向量 第二章 章末检测(B)(含答案)

上传人:每**** 文档编号:253596921 上传时间:2025-03-16 格式:DOC 页数:11 大小:118.50KB
收藏 版权申诉 举报 下载
2014-2015学年高中数学(人教A版必修四) 第二章 平面向量 第二章 章末检测(B)(含答案)_第1页
第1页 / 共11页
2014-2015学年高中数学(人教A版必修四) 第二章 平面向量 第二章 章末检测(B)(含答案)_第2页
第2页 / 共11页
2014-2015学年高中数学(人教A版必修四) 第二章 平面向量 第二章 章末检测(B)(含答案)_第3页
第3页 / 共11页
资源描述:

《2014-2015学年高中数学(人教A版必修四) 第二章 平面向量 第二章 章末检测(B)(含答案)》由会员分享,可在线阅读,更多相关《2014-2015学年高中数学(人教A版必修四) 第二章 平面向量 第二章 章末检测(B)(含答案)(11页珍藏版)》请在装配图网上搜索。

1、 第二章 平面向量(B) (时间:120分钟 满分:150分) 一、选择题(本大题共12小题,每小题5分,共60分) 1.已知向量a=(4,2),b=(x,3),且a∥b,则x的值是(  ) A.-6 B.6 C.9 D.12 2.下列命题正确的是(  ) A.单位向量都相等 B.若a与b共线,b与c共线,则a与c共线 C.若|a+b|=|a-b|,则a·b=0 D.若a与b都是单位向量,则a·b=1. 3.设向量a=(m-2,m+3),b=(2m+1,m-2),若a与b的夹角大于90°,则实数m的取值范围是(  ) A.(

2、-,2) B.(-∞,-)∪(2,+∞) C.(-2,) D.(-∞,2)∪(,+∞) 4.平行四边形ABCD中,AC为一条对角线,若=(2,4),=(1,3),则·等于(  ) A.8 B.6 C.-8 D.-6 5.已知|a|=1,|b|=6,a·(b-a)=2,则向量a与向量b的夹角是(  ) A. B. C. D. 6.关于平面向量a,b,c,有下列四个命题: ①若a∥b,a≠0,则存在λ∈R,使得b=λa; ②若a·b=0,则a=0或b=0; ③存在不全为零的实数λ,μ使得c=λ

3、a+μb; ④若a·b=a·c,则a⊥(b-c). 其中正确的命题是(  ) A.①③ B.①④ C.②③ D.②④ 7.已知|a|=5,|b|=3,且a·b=-12,则向量a在向量b上的投影等于(  ) A.-4 B.4 C.- D. 8.设O,A,M,B为平面上四点,=λ+(1-λ)·,且λ∈(1,2),则(  ) A.点M在线段AB上 B.点B在线段AM上 C.点A在线段BM上 D.O,A,B,M四点共线 9.P是△ABC内的一点,=(+),则△ABC的面积与△ABP的面积之比为(  

4、) A. B.2 C.3 D.6 10.在△ABC中,=2,=2,若=m+n,则m+n等于(  ) A. B. C. D.1 11.已知3a+4b+5c=0,且|a|=|b|=|c|=1,则a·(b+c)等于(  ) - 2 - / 11 A.- B.- C.0 D. 12.定义平面向量之间的一种运算“⊙”如下:对任意的a=(m,n),b=(p,q),令a⊙b=mq-np.下面说法错误的是(  ) A.若a与b共线,则a⊙b=0 B.a⊙b=b⊙a

5、 C.对任意的λ∈R,有(λa)⊙b=λ(a⊙b) D.(a⊙b)2+(a·b)2=|a|2|b|2 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 二、填空题(本大题共4小题,每小题5分,共20分) 13.设向量a=(1,2),b=(2,3),若向量λa+b与向量c=(-4,-7)共线,则λ=________. 14.a,b的夹角为120°,|a|=1,|b|=3,则|5a-b|=________. 15.已知向量a=(6,2),b=(-4,),直线l过点A(3,-1),且与向量a+2b

6、垂直,则直线l的方程为________. 16.已知向量=(2,1),=(1,7),=(5,1),设M是直线OP上任意一点(O为坐标原点),则·的最小值为________. 三、解答题(本大题共6小题,共70分) 17.(10分)如图所示,以向量=a,=b为边作▱AOBD,又=,=,用a,b表示、、. 18.(12分)已知a,b的夹角为120°,且|a|=4,|b|=2, 求:(1)(a-2b)·(a+b); (2)|a+b|; (3)|3a-4b|. 19.(12分)已知a=(,-1),b=,且存

7、在实数k和t,使得x=a+(t2-3)b,y=-ka+tb ,且x⊥y,试求的最小值. 20.(12分)设=(2,5),=(3,1),=(6,3).在线段OC上是否存在点M,使MA⊥MB?若存在,求出点M的坐标;若不存在,请说明理由. 21.(12分)设两个向量e1、e2满足|e1|=2,|e2|=1,e1、e2的夹角为60°,若向量2te1+7e2与e1+te2的夹角为钝角,求实数t的取值范围. 22.(12分)已知线段PQ过△OAB的重心G,且P、

8、Q分别在OA、OB上,设=a,=b,=ma,=nb. 求证:+=3. 第二章 平面向量(B) 答案 1.B [∵a∥b,∴4×3-2x=0,∴x=6.] 2.C [∵|a+b|2=a2+b2+2a·b |a-b|2=a2+b2-2a·b |a+b|=|a-b|.∴a·b=0.] 3.A [∵a与b的夹角大于90°,∴a·b<0,∴(m-2)(2m+1)+(m+3)(m-2)<0,即3m2-2m-8<0,∴-

9、-3,-5)=8.] 5.C [∵a(b-a)=a·b-|a|2=2,∴a·b=3,∴cos〈a,b〉===,∴〈a,b〉=.] 6.B [由向量共线定理知①正确;若a·b=0,则a=0或b=0或a⊥b,所以②错误;在a,b能够作为基底时,对平面上任意向量,存在实数λ,μ使得c=λa+μb,所以③错误;若a·b=a·c,则a(b-c)=0,所以a⊥(b-c),所以④正确,即正确命题序号是①④.] 7.A [向量a在向量b上的投影为|a|cos〈a,b〉=|a|·==-=-4.] 8.B [∵=λ+(1-λ)=+λ(-)∴=λ,λ∈(1,2),∴点B在线段AM上,故选B.] 9.C [

10、设△ABC边BC的中点为D,则==. ∵=(+)=,∴=,∴||=||.∴=3.] 10.B [=+=+=+(-)=+故有m+n=+=.] 11.B [由已知得4b=-3a-5c,将等式两边平方得(4b)2=(-3a-5c)2,化简得a·c=-.同理由5c=-3a-4b两边平方得a·b=0,∴a·(b+c)=a·b+a·c=-.] 12.B [若a=(m,n)与b=(p,q)共线,则mq-np=0,依运算“⊙”知a⊙b=0,故A正确.由于a⊙b=mq-np,又b⊙a=np-mq,因此a⊙b=-b⊙a,故B不正确.对于C,由于λa=(λm,λn),因此(λa)⊙b=λmq-λnp,又λ(

11、a⊙b)=λ(mq-np)=λmq-λnp,故C正确.对于D,(a⊙b)2+(a·b)2=m2q2-2mnpq+n2p2+(mp+nq)2=m2(p2+q2)+n2(p2+q2)=(m2+n2)(p2+q2)=|a|2|b|2,故D正确.] 13.2 解析 ∵a=(1,2),b=(2,3), ∴λa+b=(λ,2λ)+(2,3)=(λ+2,2λ+3). ∵向量λa+b与向量c=(-4,-7)共线, ∴-7(λ+2)+4(2λ+3)=0. ∴λ=2. 14.7 解析 ∵|5a-b|2=(5a-b)2=25a2+b2-10a·b=25×12+32-10×1×3×(-)=49. ∴

12、|5a-b|=7. 15.2x-3y-9=0 解析 设P(x,y)是直线上任意一点,根据题意,有·(a+2b)=(x-3,y+1)·(-2,3)=0,整理化简得2x-3y-9=0. 16.-8 解析 设=t=(2t,t),故有·=(1-2t,7-t)·(5-2t,1-t)=5t2-20t+12=5(t-2 )2-8,故当t=2时,·取得最小值-8. 17.解 =-=a-b.∴=+=+=+=a+b. 又=a+b.=+=+==a+b, ∴=-=a+b-a-b=a-b. 18.解 a·b=|a||b|cos 120°=4×2×=-4. (1)(a-2b)·(a+b)=a2

13、-2a·b+a·b-2b2=42-2×(-4)+(-4)-2×22=12. (2)∵|a+b|2=(a+b)2=a2+2a·b+b2=16+2×(-4)+4=12. ∴|a+b|=2. (3)|3a-4b|2=9a2-24a·b+16b2=9×42-24×(-4)+16×22=16×19, ∴|3a-4b|=4. 19.解 由题意有|a|==2,|b|==1. ∵a·b=×-1×=0,∴a⊥b. ∵x·y=0,∴[a+(t2-3)b](-ka+tb)=0.化简得k=. ∴=(t2+4t-3)=(t+2)2-.即t=-2时,有最小值为-. 20.解 设=t,t∈[0,1],则=

14、(6t,3t),即M(6t,3t).=-=(2-6t,5-3t), =-=(3-6t,1-3t).若MA⊥MB,则·=(2-6t)(3-6t)+(5-3t)(1-3t)=0.即45t2-48t+11=0,t=或t=.∴存在点M,M点的坐标为(2,1)或. 21.解 由向量2te1+7e2与e1+te2的夹角为钝角, 得<0, 即(2te1+7e2)·(e1+te2)<0. 整理得:2te+(2t2+7)e1·e2+7te<0.(*) ∵|e1|=2,|e2|=1,〈e1,e2〉=60°. ∴e1·e2=2×1×cos 60°=1 ∴(*)式化简得:2t2+15t+7<0.解得:

15、-7

展开阅读全文
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

相关资源

更多
正为您匹配相似的精品文档
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!