外文翻译对移动式遥控装置的智能控制使用2型模糊理论



《外文翻译对移动式遥控装置的智能控制使用2型模糊理论》由会员分享,可在线阅读,更多相关《外文翻译对移动式遥控装置的智能控制使用2型模糊理论(27页珍藏版)》请在装配图网上搜索。
1、 毕业设计(论文)外文资料翻译 系 部: 机械工程系 专 业: 机械工程及自动化 姓 名: 学 号: 外文出处: Advance online publication: 4 August 2006 附 件: 1.外文资料翻译译文;2.外文原文。 指导
2、教师评语: 该生的外文翻译基本正确,没有严重的语法或拼写错误,已达到本科毕业的水平。 签名: 年 月 日 附件1:外文资料翻译译文 对移动式遥控装置的智能控制——使用2型模糊理论 摘要:我们针对单轮移动式遥控装置的动态模型开发出一种追踪控制器,这种追踪控制器是建立在模糊理论的基础上将运动控制器和力矩控制器整合起来的装置。用计算机模拟来确定追踪控制器的工作情况和它对不同航向的实际用途。 关键词:智能控制
3、、2型模糊理论、移动式遥控装置 I. 介绍 由于受运动学强制约束,移动遥控装置是非完整的系统。描述此约束的恒等式不能够明确的反映出遥控装置在局部及整体坐标系中的关系。因此,包括它们在内的控制问题吸引了去年控制领域的注意力。 不同的方法被用来解决运动控制的问题。Kanayama等人针对一个非完整的交通工具提出了一个稳定的追踪控制方案,这种方案使用了Lyapunov功能。Lee等人用还原法和饱和约束来解决追踪控制。此外,大多数被报道过的设计依赖于智能控制方式如模糊逻辑控制和神经式网络。 然而上述提到的发表中大多数都集中在移动式遥控装置的运动模块,即这些模块是受速度控制的。而很少有发表关注到
4、不完整的动力系统,即受力和扭矩控制的模块:布洛克。 在2005年12月15日被视为标准并且在2006年3月5日被公认的手稿。这一著作在某种程度上受到DGEST——一个在Grant 493.05-P下的研究所的支持。研究者们同样也受到了来自CONACYT——给予他们研究成果的奖学金的支持。 在这篇论文中我展现了一台追踪单轮移动式遥控装置的控制器,这台追踪控制器用了一种控制条件如移动遥控装置的速度达到了有效速度,还用了一种模糊理论控制器如给实际遥控装置提供了必要扭矩。这篇论文的其余部分的结构如下:第二部分和第三部分对问题作了简洁描述,包括了单轮车移动遥控装置的运动和动力模块和对追踪控制器的介绍
5、。第四部分用追踪控制器列举了些模拟结果。第五部分做出了结论。 II. 疑难问题陈述 A移动控制装置 这个被看作单轮移动控制器的模型(见图1),它是由两个同轴驱动轮和一个自由前轮组成。 图1. 旋转移动机械手 运动规律可见平面5的运动方程式 q&= M(q)&+V(q,q)v+G(q)= (1) q= q是描述控制器位置的坐标矢量,(x,y)是笛卡尔坐标,它指出了构件的移动中心,θ是构件朝向和x轴之间的夹角(夹角为逆时针形式);v为速度矢量,v 和w分别为长度和角速度; τ为输入矢量,M是一个对称的正定义的固定零件,R是一个向心的零件,G是重力矢量。等式(1
6、,a)表示移动控制装置的运动或驾驶系统。注意到防滑条件强加了一个不完整的约束,也就是说这个移动控制装置只能够朝着驱动轮轴线的方向移动。 ycos-xsin=0 (2) 移动遥控装置式的追踪控制器构造如下:一条特定的预想轨迹q和移动遥控装置的方向,我们必须设计出一个控制器使其适用于合适的扭矩诸如测定的位置达到参考位置(由3式表示)。 (3) 为了达到控制目标,我们基于5的步骤,我们得到τ(t)利用模糊逻辑控制器(FLC)控制着轮系(1.a)。追踪控制器的大体结构见图2 III.运动模块的控制 我们基于Kanayama等人提议的程序和Nelson等人解决运动模块的追踪问题,这由
7、V表示出来。假设轨迹q达到了(4)式的要求: q= (4) 用遥控器的局部框架(图1中的移动坐标系),错误的坐标可被定义为: e=T(q-q), ==(5) 辅助速度控制着输入量,其可以对(1,a)实现追踪。表示如下: v=f(e,v), =(6) 其中k1, k2 and k3是连续的正整数 IV.模糊逻辑控制器 模糊逻辑控制器的目的是找出控制输入量τ 如实际速度矢量v和速度矢量vc之间的关系 (7) 就像图2中所显示的一样,根本上说FLC有两个输入变量相应的引出两个速度错误,分别是长度和角度,且两个输出变量,驱动和旋转输入扭矩,分别为F和N,他们的作用分别是1的所有
8、直角和2的梯形,且很容易被估算出来。 图3和图4描绘了N,C,P代表的模糊方框中的MFS结合了每一个输入和输出变量,这些变量都被包括在范围[-1,1]中 图2. 追踪控制结构 图3. 输入可变电压 ev 和 ew 图 4. 输出的F和N FLC中包含9条控制着输入和输出关系的直线,这采用了Mamdani形式的推论引擎,我们利用了万有引力中心的方法来实现非模糊程序。在表格1中,我们表现了一种直线形式: Rule i: 假如ev 是 G1 ,ew 是G2 那么F 是G3 ,N 是G4 Where G1..G4 are the fuzzy set associated t
9、o each variable and i= 1 ... 9. 表1 模糊尺组 In Table I, N means NEGATIVE, P means POSITIVE and C means ZERO. V.模拟结果 在Matalb实现的模拟实验是用来测试移动式遥控装置的追踪控制器(在(1)中已有定义)。我们认为初始位置q和 初始速度v。在图5到图8中,我们体现了对于情况1的模拟结果。位置和方向错误分别见图5和图6,错误可近似于零。追踪轨迹(见图7)也和预想的及其接近,速度错误(见图8)减小至0,达到了整个模拟过程中1秒内的控制目标。图9是测试控制器的模拟简图。图10是三个变
10、量的追踪错误。最后,图11是遗传运算法则的演化过程,这个通常用来查找模糊控制器的最佳参数。 图 5.位置错误参量值。(直线为x,虚线为y) 图 6.方向错误参量值 图 7.移动遥控装置运动轨迹 图 8. 速度错误: 实线: 错误在e, 虚线:错误在 evw 图 9 控制器的模拟板块 图10三个变量的跟踪错误 图 11 查找最优的方案仿真 表2为模糊控制器在25个在不同环境下所产生的模拟结果。从这个表中我们同样选择了不同的速度和位置参数 表2 不同模糊控制器实验仿真 VI.总结 追踪控制器是将单轮移动遥控装置的模糊逻辑控制器与可测
11、定点的稳定性和速度轨迹的动力学整合起来的。计算机模拟结果确定了这台控制器可以实现我们的目标。在以后的工作中,图2中的控制结构可以做些扩展,比如说增加些跟踪的准确性或工作性能。 附件2:外文原文 Intelligent Control of an Autonomous Mobile Robot using Type-2 Fuzzy Logic Abstract— We develop a tracking controller for the dynamic model of unicycle mobile robot by integr
12、ating a kinematic controller and a torque controller based on Fuzzy Logic Theory. Computer simulations are presented confirming the performance of the tracking controller and its application to different navigation problems. Index Terms—Intelligent Control, Type-2 Fuzzy Logic, Mobile Robots. I.
13、INTRODUCTION Mobile robots are nonholonomic systems due to the constraints imposed on their kinematics. The equations describing the constraints cannot be integrated simbolically to obtain explicit relationships between robot positions in local and global coordinate’s frames. Hence, control proble
14、ms involve them have attracted attention in the control community in the last years [11]. Different methods have been applied to solve motion control problems. Kanayama et al. [10] propose a stable tracking control method for a nonholonomic vehicle using a Lyapunov function. Lee et al. [12] solved
15、 tracking control using backstepping and in [13] with saturation constraints. Furthermore, most reported designs rely on intelligent control approaches such as Fuzzy Logic Control [1][8][14][17][18][20] and Neural Networks [6][19]. However the majority of the publications mentioned above, has conc
16、entrated on kinematics models of mobile robots, which are controlled by the velocity input, while less attention has been paid to the control problems of nonholonomic dynamic systems, where forces and torques are the true inputs: Bloch Manuscript received December 15, 2005 qnd accepted on April 5,
17、 2006. This work was supported in part by the Research Council of DGEST under Grant 493.05-P. The students also were supported by CONACYT with scholarships for their graduate studies. Oscar Castillo is with the Division of Graduate Studies and Research in Tijuana Institute of Technology, Mexico (c
18、orresponding author phone: 52664-623-6318; fax: 52664-623-6318; e-mail: ocastillo@tectijuana.mx). Patricia Melin is with the Division of Graduate Studies and Research in Tijuana Institute of Technology, Mexico (e-mail: harias@tectijuana.mx). Arnulfo Alanis is with the Division of Graduate Studie
19、s and Research in Tijuana Institute of Technology, Mexico (e-mail: pmelin@tectijuana.mx) Leslie Astudillo is a graduate student in Computer Science with the Division of Graduate Studies and Research in Tijuana Institute of Technology, Mexico (e-mail: pmelin@tectijuana.mx) Jose Soria is a with th
20、e Division of Graduate Studies and Research in Tijuana Institute of Technology, Mexico (e-mail: jsoria@ucsd.edu). Luis Aguilar is with CITEDI-IPN Tijuana, Mexico(e-mail:laguilar@citedi.mx) and Drakunov [2] and Chwa [4], used a sliding mode control to the tracking control problem. Fierro and L
21、ewis [5] propose a dynamical extension that makes possible the integration of kinematic and torque controller for a nonholonomic mobile robot. Fukao et al. [7], introduced an adaptive tracking controller for the dynamic model of mobile robot with unknown parameters using backstepping. In this pape
22、r we present a tracking controller for the dynamic model of a unicycle mobile robot, using a control law such that the mobile robot velocities reach the given velocity inputs, and a fuzzy logic controller such that provided the required torques for the actual mobile robot. The rest of this paper is
23、organized as follows. Sections II and III describe the formulation problem, which include: the kinematic and dynamic model of the unicycle mobile robot and introduces the tracking controller. Section IV illustrates the simulation results using the tracking controller. The section V gives the conclus
24、ions. II. PROBLEM FORMULATION A. The Mobile Robot The model considered is a unicycle mobile robot (see Fig. 1), it consist of two driving wheels mounted on the same axis and a front free wheel [3]. Fig. 1. Fig. 1. Wheeled mobile robot. The motion can be described with equation (1) of m
25、ovement in a plane [5]: Q&= M(q)&+V(q,q)v+G(q)= (1) Where q=is the vector of generalized coordinates which describes the robot position, (x,y) are the cartesian coordinates, which denote the mobile center of mass and θ is the angle between the heading direction and the x-axis(which is taken
26、 counterclockwise form);v= is the vector of velocities, v and w are the linear and angular velocities respectively; is the input vector,M(q)R is a symmetric and positive-definite inertia matrix, V(q,q)Ris the centripetal and Coriolis matrix,G(q)R is the gravitational vector. Equation (1.a) represent
27、s the kinematics or steering system of a mobile robot. Notice that the no-slip condition imposed a non-holonomic constraint described by (2), that it means that the mobile robot can only move in the direction normal to the axis of the driving wheels. ycos-xsin=0 (2) B. Tracking Controller of
28、Mobile Robot Our control objective is established as follows: Given a desired trajectory qd(t) and orientation of mobile robot we must design a controller that apply adequate torque τ such that the measured positions q(t) achieve the desired reference qd(t) represented as (3): (3) To reach the co
29、ntrol objective, we are based in the procedure of [5], we deriving a τ(t) of a specific vc(t) that controls the steering system (1.a) using a Fuzzy Logic Controller (FLC). A general structure of tracking control system is presented in the Fig. 2. III. CONTROL OF THE KINEMATIC MODEL We are based
30、on the procedure proposed by Kanayama et al. [10] and Nelson et al. [15] to solve the tracking problem for the kinematic model, this is denoted as vc(t). Suppose the desired trajectory qd satisfies (4): q= (4) Using the robot local frame (the moving coordinate system x-y in figure 1), the error
31、 coordinates can be defined as (5): e=T(q-q), ==(5) And the auxiliary velocity control input that achieves tracking for (1.a) is given by (6): v=f(e,v), =(6) Where k1, k2 and k3 are positive constants. IV. FUZZY LOGIC CONTROLLER The purpose of the Fuzzy Logic Controller (FLC) is to find a c
32、ontrol input τ such that the current velocity vector v to reach the velocity vector vc this is denoted as (7): (7) As is shown in Fig. 2, basically the FLC have 2 inputs variables corresponding the velocity errors obtained of (7) (denoted as ev and ew: linear and angular velocity errors respect
33、ively), and 2 outputs variables, the driving and rotational input torques τ (denoted by F and N respectively). The membership functions (MF)[9] are defined by 1 triangular and 2 trapezoidal functions for each variable involved due to the fact are easy to implement computationally. Fig. 3 and Fig.
34、4 depicts the MFs in which N, C, P represent the fuzzy sets [9] (Negative, Zero and Positive respectively) associated to each input and output variable, where the universe of discourse is normalized into [-1,1] range. Fig. 2. Tracking control structure Fig. 3. Membership function of the input
35、 variables ev and ew Fig. 4. Membership functions of the output variables F and N. The rule set of FLC contain 9 rules which governing the input-output relationship of the FLC and this adopts the Mamdani-style inference engine [16], and we use the center of gravity method to realize defuzzific
36、ation procedure. In Table I, we present the rule set whose format is established as follows: Rule i: If ev is G1 and ew is G2 then F is G3 and N is G4 Where G1..G4 are the fuzzy set associated to each variable and i= 1 ... 9. TABLE 1 FUZZY RULE SET In Table I, N means NEGATIVE, P means POS
37、ITIVE and C means ZERO. V. SIMULATION RESULTS Simulations have been done in Matlab to test the tracking controller of the mobile robot defined in (1). We consider the initial position q(0) = (0, 0, 0) and initial velocity v(0) = (0,0). From Fig. 5 to Fig. 8 we show the results of the simulation f
38、or the case 1. Position and orientation errors are depicted in the Fig. 5 and Fig. 6 respectively, as can be observed the errors are sufficient close to zero, the trajectory tracked (see Fig. 7) is very close to the desired, and the velocity errors shown in Fig. 8 decrease to zero, achieving the con
39、trol objective in less than 1 second of the whole simulation. We show in Fig. 9 the Simulink block diagram to test the controller. We also show in Fig. 10 the tracking errors in the three variables. Finally, we show in Fig. 11 the evolution of the genetic algorithm that was used to find the optimal
40、parameters for the fuzzy controller. Fig. 5. Positions error with respect to the reference values. Solid: error in x, dotted: error in y. Fig. 6. Orientation error with respect to the reference values. Fig. 7. Mobile Robot Trajectory. Fig. 8. Velocity errors: Solid: error in e, dotted:
41、 error in evw Fig. 9 Simulink block diagram of the controller. Fig. 10 Tracking errors in the three variables. Fig. 11 Evolution of GA for finding optimal Controller In Table II we show simulation results for 25 experiments with different conditions for the gains of the fuzzy controller.
42、 We can also appreciate from this table that different reference velocities and positions were considered. TABLE II SIMULATION RESULTS FOR DIFFERENT EXPERIMENTS WITH THE FUZZY CONTROLLER. VI. CONCLUSIONS We described the development of a tracking controller integrating a fuzzy logic contro
43、ller for a unicycle mobile robot with known dynamics, which can be applied for both, point stabilization and trajectory tracking. Computer simulation results confirm that the controller can achieve our objective. As future work, several extensions can be made to the control structure of Fig. 2, such
44、 as to increase the tracking accuracy and the performance level. REFERENCES [1] S. Bentalba, A. El Hajjaji, A. Rachid, Fuzzy Control of a Mobile Robot: A New Approach, Proc. IEEE Int. Conf. On Control Applications, Hartford, CT, pp 69-72, October 1997. [2] A. M. Bloch, S. Drakunov, Tracking in
45、NonHolonomic Dynamic System Via Sliding Modes, Proc. IEEE Conf. On Decision & Control, Brighton, UK, pp 1127-1132, 1991. [3] G. Campion, G. Bastin, B. D’Andrea-Novel, Structural Properties and Classification of Kinematic and Dynamic Models of Wheeled Mobile Robots, IEEE Trans. On Robotics and Auto
46、mation, Vol. 12, No. 1, February 1996. [4] D. Chwa., Sliding-Mode Tracking Control of Nonholonomic Wheeled Mobile Robots in Polar coordinates, IEEE Trans. On Control Syst. Tech. Vol. 12, No. 4, pp 633-644, July 2004. [5] R. Fierro and F.L. Lewis, Control of a Nonholonomic Mobile Robot: Backstepp
47、ing Kinematics into Dynamics. Proc. 34th Conf. on Decision & Control, New Orleans, LA, 1995. [6] R. Fierro, F.L. Lewis, Control of a Nonholonomic Mobile Robot Using Neural Networks, IEEE Trans. On Neural Networks, Vol. 9, No. 4, pp 589 – 600, July 1998. [7] T. Fukao, H. Nakagawa, N. Adachi, Adap
48、tive Tracking Control of a NonHolonomic Mobile Robot, IEEE Trans. On Robotics and Automation, Vol. 16, No. 5, pp. 609-615, October 2000. [8] S. Ishikawa, A Method of Indoor Mobile Robot Navigation by Fuzzy Control, Proc. Int. Conf. Intell. Robot. Syst., Osaka, Japan, pp 1013-1018, 1991. [9] J. S
49、. R. Jang, C.T. Sun, E. Mizutani, Neuro Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence, Prentice Hall, Upper Sadle River, NJ, 1997. [10] Y. Kanayama, Y. Kimura, F. Miyazaki T. Noguchi, A Stable Tracking Control Method For a Non-Holonomic Mobile Robot, Proc.
50、 IEEE/RSJ Int. Workshop on Intelligent Robots and Systems, Osaka, Japan, pp 1236- 1241, 1991. [11] I. Kolmanovsky, N. H. McClamroch., Developments in Nonholonomic Nontrol Problems, IEEE Control Syst. Mag., Vol. 15, pp. 20–36, December. 1995. [12] T-C Lee, C. H. Lee, C-C Teng, Tracking Control of
51、 Mobile Robots Using the Backsteeping Technique, Proc. 5th. Int. Conf. Contr., Automat., Robot. Vision, Singapore, pp 1715-1719, December 1998. [13] T-C Lee, K. Tai, Tracking Control of Unicycle-Modeled Mobile robots Using a Saturation Feedback Controller, IEEE Trans. On Control Systems Technology
52、, Vol. 9, No. 2, pp 305-318, March 2001. [14] T. H. Lee, F. H. F. Leung, P. K. S. Tam, Position Control for Wheeled Mobile Robot Using a Fuzzy Controller, IEEE pp 525-528, 1999. [15] W. Nelson, I. Cox, Local Path Control for an Autonomous Vehicle, Proc. IEEE Conf. On Robotics and Automation, pp.
53、 1504-1510, 1988. [16] K. M. Passino, S. Yurkovich, “Fuzzy Control”, Addison Wesley Longman, USA 1998. [17] S. Pawlowski, P. Dutkiewicz, K. Kozlowski, W. Wroblewski, Fuzzy Logic Implementation in Mobile Robot Control, 2nd Workshop On Robot Motion and Control, pp 65-70, October 2001. [18] C-C T
54、sai, H-H Lin, C-C Lin, Trajectory Tracking Control of a Laser-Guided Wheeled Mobile Robot, Proc. IEEE Int. Conf. On Control Applications, Taipei, Taiwan, pp 1055-1059, September 2004. [19] K. T. Song, L. H. Sheen, Heuristic fuzzy-neural Network and its application to reactive navigation of a mobil
55、e robot, Fuzzy Sets Systems, Vol. 110, No. 3, pp 331-340, 2000. [20] S. V. Ulyanov, S. Watanabe, V. S. Ulyanov, K. Yamafuji, L. V. Litvintseva, G. G. Rizzotto, Soft Computing for the Intelligent Robust Control of a Robotic Unicycle with a New Physical Measure for Mechanical Controllability, Soft C
56、omputing 2 pp 73 – 88, Springer- Verlag, 1998. Oscar Castillo is a Professor of Computer Science in the Graduate Division, Tijuana Institute of Technology, Tijuana, Mexico. In addition, he is serving as Research Director of Computer Science and head of the research group on fuzzy logic and genetic
57、 algorithms. Currently, he is President of HAFSA (Hispanic American Fuzzy Systems Association) and Vice-President of IFSA (International Fuzzy Systems Association) in charge of publicity. Prof. Castillo is also Vice-Chair of the Mexican Chapter of the Computational Intelligence Society (IEEE). Prof.
58、 Castillo is also General Chair of the IFSA 2007 World Congress to be held in Cancun, Mexico. He also belongs to the Technical Committee on Fuzzy Systems of IEEE and to the Task Force on “Extensions to Type-1 Fuzzy Systems”. His research interests are in Type-2 Fuzzy Logic, Intuitionistic Fuzzy Logi
59、c, Fuzzy Control, Neuro-Fuzzy and Genetic-Fuzzy hybrid approaches. He has published over 50 journal papers, 5 authored books, 10 edited books, and 160 papers in conference proceedings. Patricia Melin is a Professor of Computer Science in the Graduate Division, Tijuana Institute of Technology, Tij
60、uana, Mexico. In addition, she is serving as Director of Graduate Studies in Computer Science and head of the research group on fuzzy logic and neural networks. Currently, she is Vice President of HAFSA (Hispanic American Fuzzy Systems Association) and Program Chair of International Conference FNG’0
61、5. Prof. Melin is also Chair of the Mexican Chapter of the Computational Intelligence Society (IEEE). She is also Program Chair of the IFSA 2007 World Congress to be held in Cancun, Mexico. She also belongs to the Committee of Women in Computational Intelligence of the IEEE and to the New York Acade
62、my of Sciences. Her research interests are in Type-2 Fuzzy Logic, Modular Neural Networks, Pattern Recognition, Fuzzy Control, Neuro-Fuzzy and Genetic-Fuzzy hybrid approaches. She has published over 50 journal papers, 5 authored books, 8 edited books, and 140 papers in conference proceedings. Lesl
63、ie Astudillo is a graduate student in Computer Science with the Division of Graduate Studies and Research in Tijuana Institute of Technology, Mexico. She has published 2 papers in Conference Proceedings. Arnulfo Alanis is a Professor with the Division of Graduate Studies and Research in Tijuana In
64、stitute of Technology, Mexico. He has published 2 Journal papers and 15 Conference Proceedings papers. Jose Soria is a Professor with the Division of Graduate Studies and Research in Tijuana Institute of Technology, Mexico. He has published 4 Journal papers and 5 Conference Proceedings papers. L
65、uis Aguilar is a Professor with the Center for Research in Digital Systems in Tijuana, Mexico. He has published 5 Journal papers and 15 Conference Proceedings papers. He is member of the National System of Researchers of Mexico, and member of IEEE. He is member of the IEEE Computational Intelligence-Chapter Mexico, and member of the Hispanic American Fuzzy Systems Association. He is also member of the International Program Committees of several Conferences, and reviewers of several International Journals.
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年水电工程运行维护管理合同示范文本.docx
- 2025年工程勘测设计合同模板.docx
- 2025年区域产品销售代理合同.docx
- 2025年经销商授权合同样本.docx
- 2025年员工住房资金借贷合同.docx
- 2025年轻钢建筑施工合同示例.docx
- 2025年网络推广托管合同.docx
- 2025年简明个人借款正式合同范例.docx
- 2025年房产按揭贷款合同范例.docx
- 2025年技术合同争议调解.docx
- 2025年电子版城市住宅租赁合同范本.docx
- 2025年简易转让合同协议书样本.docx
- 2025年投资顾问服务合同实例.docx
- 2025年经销合同模板.docx
- 2025年工业项目设计合同样本.docx