Q11Y型闸式剪板机液压系统设计4张CAD图
Q11Y型闸式剪板机液压系统设计4张CAD图,Q11Y,型闸式剪,板机,液压,系统,设计,CAD
附录一:
液压系统
传递动力的基本方法一般分为三种:电气、机械和液压。大多数应用系统实际上是将三种方法组合起来而得到最有效的最全面的系统。为了合理地确定采取哪种方法,重要的是了解各种方法的显著特征。例如液压系统在长距离上比机械系统更能经济地传递动力。然而液压系统与电气系相比,传递动力的距离较短。
液压传动有许多突出的优点并被广泛的应用,如一般工业用的塑料加工机械, 压力机械,机床等;应用机械设备工程机械,建筑机械,农业机械,汽车等;钢 铁行业的冶金机械,起重机械,还有轧辊调整装置等;水利工程中的控制闸门装 置,河床升降装置,桥梁和其他操作机构;发电厂高速涡轮装置,核电站等;船舶甲板用的起重机械(绞车),船头门,舱壁阀、船尾推进器等;特殊技术用的 巨型天线控制装置、测量浮标、升降旋转舞台等;军事工业用的火炮操纵装置、船舶减摇装置、飞行器仿真、飞机起落架的收放装置和方向舵控制装置等。特殊 技术的天线控制装置,测量浮标,升降旋转舞台;军用的火炮操纵装置,船舶减 摇装置,飞行器仿真,飞机起落架收放装置和方向舵控制装置和其他设备。
液压系统的作用为通过改变压强,增大作用力。一个液压系统的好坏取决于系统设计的合理性、系统元件性能的优劣,系统的污染防护和处理,而最后一点尤为重要。近年来我国国内液压技术有很大的提高,不再单纯地使用国外的液压技术进行加工。
一个完整的液压系统由五个部分组成,即:动力元件、执行元件、控制元件、辅助元件(附件)和液压油。
动力元件的作用是将原动机的机械能转换成液体的压力能,指液压系统中的油泵,它向整个液压系统提供动力。液压泵的结构形式一般有齿轮泵、叶片泵和柱塞泵。
执行元件(如液压缸和液压马达)的作用是将液体的压力能转换为机械能,驱动负载作直线往复运动或回转运动。
控制元件(即各种液压阀)在液压系统中控制和调节液体的压力、流量和方向。根据控制功能的不同,液压阀可分为压力控制阀、流量控制阀和方向控制阀。压力控制阀又分为溢流阀、减压阀、顺序阀、压力继电器等;流量控制阀包括节流
阀、调整阀、分流集流阀等;方向控制阀包括单向阀、液控单向阀、梭阀、换向阀等。根据控制方式不同,液压阀可分为开关式控制阀、定值控制阀和比例控制阀。
辅助元件包括油箱、滤油器、油管及管接头、密封圈、快换接头、高压球阀、胶管总成、测压接头、压力表、液位计、油温计等。
液压油是液压系统中传递能量的工作介质,有各种矿物油、乳化液和合成型液压油等几大类。
液压系统的作用是帮助人类工作,主要通过执行元件将压力转换为旋转或往复运动。
液压原理:它由两个不同大小的缸体充满了水或油。充满水的称为“水压机”,充满油的称为“液压机”。两个液缸每个都有一个可动的活塞,如果在小活塞上加点压力,根据帕斯卡定律,小活塞的压力通过液体的压力传递到大活塞,顶端的活塞将前进很长的距离。基本小活塞的横截面积为 S1,外加一个小活塞上一个向下的力 F1。因此,小活塞对液体的压强 P=F1/S1 的,可以在所有方向上传输同样大小。通过大活塞的压力也为 P。如果大活塞的横截面积为 S2,活塞的压强P 向上的压力 F2=P*S2,横截面积是小活塞的几倍,加给小活塞小的力,活塞会有大的压力,由此用液压机压制胶合板,油,提起重物,锻造炼钢。
液压系统成功而又广泛使用的秘密在于它的通用性和易操作性。液压动力传递不会像机械系统那样受到机器几何形体的制约,另外,液压系统不会像电气系统那样受到材料物理性能的制约,它对传递功率几乎没有量的限制。例如,一个电磁体的性能受到钢的磁饱和极限的限制,相反,液压系统的功率仅仅受材料强度的限制。
企业为了提高生产率将越来越依靠自动化,这包括远程和直接控制生产操作加工过程和材料处理等。液压动力之所以成为自动化的重要组成部分,是因为它有如下主要的四种优点:
1 控制方便,精确通过操作一个简单的操纵杆和按钮,液压系统的操作者便能立即起动、停止、加减速和能提供任意功率、位置精度为万分之一英寸的位置控制力。一个使飞机驾驶员升起和落下起落架的液压系统,当飞行员向某方向移动控制阀,压力油流入液压缸的某一腔从而降下起落架。飞行员向相反方向移动
控制阀,允许油液进入液压缸的另一腔来收起落架。
2 增力,一个液压系统没有使用笨重的齿轮、滑轮杠杆就能简单有效地将不到一盎司的力放大产生儿上百吨力的输出。
3 恒力或恒扭矩,只有液压系统能提供不随速度变化而变化的恒力或恒扭矩, 它可以驱动对象从每小时移动几英寸到每分钟几百英寸.从每小时几转到每分钟 几千转。
4 简便、安全、经济,总的来说,液压系统比机械或电气系统使用更少的运动部件,因此,它们运行与维护简便。这使得系统结构紧凑,安全可靠。例如一种用于车辆上的新型动力转向控制装置己淘汰其他类型的转向动力装置,该转向部件中包含有人力操纵方向控制阀和分配器。因为转向部件是全液压的,没有万向节、轴承、减速齿轮等机械连接,这使得系统简单紧凑。另外,只需输入很小的扭矩就能产生满足极恶劣工作条件所需的控制力.这对操作空间限制而需要小方向盘的场合很重要,这也是减轻操作者疲劳所必需的。
液压系统的其他优点包括双向运动、过载保护和无级变速控制,在已有的任何动力系统中液压系统亦具有最大的单位质量功率比。
液压系统也有三个弱点:
1 由于传动介质(液压油)流动的过程中部分位置流速不同,导致液体内部出现摩擦,同时液体与管道内壁也有摩擦,这都是液压油温度升高的原因。温度过高会导致更多的内部和外部的泄漏,减少其机械效率。同时由于较高的温度, 液压油会膨胀。导致可压缩增大,使操作不能很好的控制传输。解决方法:高温是液压系统的自身问题,只能最大减轻不能根除。使用质量更好的液压油,液压管的布局尽量避免出现弯曲,使用高品质的管材和管件,液压阀等。
2 液压系统的震动也是弱点之一。由于液压油在管道中流动的高速冲击和控制阀的打开关闭的过程中的影响是系统振动的原因。强烈震动会导致系统的控制动作错误,也会使系统中一些更复杂精密设备出现错误,从而导致系统故障。解决方案:液压管应该是固定的,以避免急弯。为了避免频繁流动方向的变化,无法避免时应将减震措施应该做到最好。整个液压系统应具有良好的减振措施,同时避免在系统外部振荡器的影响。
3 液压系统有内泄露和外泄露,内泄漏是指发生在系统中的泄露过程,如液
压活塞缸的泄漏,控制阀滑阀与阀体之间的泄漏,如两侧。内泄漏虽然没有液压油的损失,但是由于泄露,已经确定的控制动作会受到影响,直至系统故障。外泄露是指发生在系统与外部环境之间的泄露。液压油直接泄露到环境中,除了会影响工作环境,没有足够的动力将导致系统故障。液压油泄露到环境中也有火灾的危险。解决方案:使用质量更好的密封件,以提高设备的加工精度。
在液压系统及其系统中,密封装置用来防止工作介质的泄漏及外界灰尘和异物的侵入。其中起密封作用的元件,即密封件。外漏会造成工作介质的浪费,污染机器和环境,甚至引起机械操作失灵及设备人身事故。内漏会引起液压系统容积效率急剧下降,达不到所需要的工作压力,甚至不能进行工作。侵入系统中的微小灰尘颗粒,会引起或加剧液压元件摩擦副的磨损,进一步导致泄漏。
因此,密封件和密封装置是液压设备的一个重要组成部分。它的工作的可靠性和使用寿命,是衡量液压系统好坏的一个重要指标。除间隙密封外,都是利用密封件,使相邻两个耦合表面间的间隙控制在需要密封的液体能通过的最小间隙以下。在接触式密封中,分为自封式压紧型密封和自封式自紧型密封(即唇形密封)两种。
附录二:
Hydraulic System
There are only three basic methods of transmitting power : Electrical , mechanicaland fluid power.Most applications actually use a combination of the three methods to obtain the most efficient overall system.To properly determine which principle method to use。it is important to know the salient features of each type.For example,fluid systems call transmit power more economically Over greater distances than Can mechanical types.However,fluid systems are restricted to shorter distances than are electrical systems.
Hydraulic transmission there are many outstanding advantages, it is widely used, such as general industrial use of plastics processing machinery, the pressure of machinery, machine tools, etc.; operating machinery engineering machinery, construction machinery, agricultural machinery, automobiles, etc.; iron and steel industry metallurgical machinery, lifting equipment, such as roller adjustment device; civil water projects with flood control and dam gate devices, bed lifts installations, bridges and other manipulation of institutions; speed turbine power plant installations, nuclear power plants, etc.; ship from the deck heavy machinery (winch), the bow doors, bulkhead valve, stern thruster, etc.; special antenna technology giant with control devices, measurement buoys, movements such as rotating stage; military-industrial control devices used in artillery, ship anti- rolling devices, aircraft simulation, aircraft retractable landing gear and rudder control devices and other devices.
The role of the hydraulic system to increase the force by changing the pressure. A hydraulic system is good or bad depends on the system design is reasonable, the merits of the performance system components, system, pollution prevention and treatment, while the last point is particularly important. In recent years, China's domestic hydraulic technology has greatly improved, not simply using hydraulic technology from abroad for processing.
A complete hydraulic system consists of five parts, namely, power components,
the implementation of components, control components, auxiliary components (Annex) and the hydraulic oil.
The role of dynamic components is the original motivation of the mechanical energy into fluid pressure energy, the hydraulic system of pumps, which provide power to the entire hydraulic system. Structures of hydraulic pumps generally have gear pumps, vane pumps and piston pumps.
Implementation of components (such as hydraulic cylinders and hydraulic motors) is to pressure the liquid can be converted to mechanical energy to drive the load for a linear reciprocating movement or rotational movement.
Control components in the hydraulic system control and regulation of fluid pressure, flow and direction. According to the different control functions, hydraulic valves can be divided into pressure control valves, flow control valves and directional control valve. Pressure control valve is divided into benefits flow valve (safety valve), pressure relief valve, sequence valve, pressure switch, etc.; flow control valves including throttle, adjusting valves, flow diversion valve assembly; Directional control valve includes a check valve, check valve, shuttle valve, valve and so on. Under the control of different ways, hydraulic valves can be divided into switching control valves, control valves and the fixed value proportional control valve.
Auxiliary components, including fuel tanks, filters, tubing and pipe joints, seals, quick couplings, high pressure ball valve, hose assembly, pressure fittings, pressure gauge, oil level, oil temperature meter and so on.
Hydraulic system of hydraulic oil is the work of the energy transfer medium, a variety of mineral oil, emulsion, oil hydraulic molding Hop categories
The role of the hydraulic system is to help humanity work. Mainly by the implementation of components to rotate or pressure into a reciprocating motion.
Hydraulic principle : It consists of two cylinders of different sizes and composition of fluid in the fluid full of water or oil. Water is called "hydraulic press"; the said oil filled "hydraulic machine." Each of the two liquid a sliding piston, if the increase in the small piston on the pressure of a certain value, according to Pascal's
law, small piston to the pressure of the pressure through the liquid passed to the large piston, piston top will go a long way to go. Based cross-sectional area of the small piston is S1, plus a small piston in the downward pressure on the F1. Thus, a small piston on the liquid pressure to P = F1/SI, Can be the same size in all directions to the transmission of liquid. "By the large piston is also equivalent to the inevitable pressure P. If the large piston is the cross-sectional area S2, the pressure P on the piston in the upward pressure generated F2 = PxS2 Cross-sectional area is a small multiple of the piston cross-sectional area. From the type known to add in a small piston of a smaller force, the piston will be in great force, for which the hydraulic machine used to suppress plywood, oil, extract heavy objects, such as forging steel.
The secret of hydraulic systems success and widespread use is its versatility and manageability.Fluid power is not hindered by the geometry operations when the potential difference between the tool and the work piece is sufficiently high, a transient spark discharges through the fluid, removing a very small amount of metal from the work piece of the machine as is the ease in mechanical systems.Also, power can be transmitted in almost limitless quantities because fluid systems are not so limited by the physical 1imitations of materials as are the electrical systems.For example,the performance of an electromagnet is limited by The saturation limit of steel.On the other hand,the power limit of fluid systems is 1imited only by the strength capacity of the material.
Industry is going to depend more and more on automation in order to increase productivity.This includes remote and direct control of production operations, manufacturing processes 。 and materials handling.Fluid power is the muscle of automation because of advantages in the following four major categories.
1 The precise convenient control by operating a simple joystick and buttons, the operators of the hydraulic system and can immediately start, stop, and deceleration and can provide any power, position precision for one over ten thousand inch position control. A make the pilot rises and fall the landing gear on the hydraulic system, when the pilot to a certain direction control valves, pressure oil into
hydraulic cylinder of a cavity and came down on the landing gear. The pilot to move in the opposite direction control valves, allow the oil into the hydraulic cylinder of another chamber to take back on the landing gear.
2 Multiplication of force. A fluid power system(without using cumbersome gears,pulleys,and levers)Can multiply forces Simply and efficiently from a fraction of an ounce to several hundred tons of output.
3 Constant force or torque.Only fluid power systems are capable of providing constant force or torque regardless of speed changes.This is accomplished whether the work output moves a few inches per hour,several hundred inches per minute,a few revolutions per hour.or thousands of revolutions per minute.
4 Simplicity,safety,economy.general,fluid power systems use fewer moving parts than comparable mechanical or electrical systems.Thus,they ale simpler to maintain and operate . This , in turn , maximizes safety , compactness , and reliability.For example,a new power steering control designed has made all other kinds of power systems obsolete on many off—highway vehicles.The Steering unit consists of a manually operated directional control valve and meter in a single body . transportation , marine technology , and offshore gas and petroleum exploration.
In addition,very little input torque is required to produce the control needed for the toughest applications.This is important where 1imitations of control space require a small steering wheel and it becomes necessary to reduce operator fatigue.
Additional benefits of fluid power systems include instantly reversible motion 。automatic.protection against overloads,and infinitely variable speed control.Fluid power systems also have the highest horsepower per weight ratio of any known power source.
The three hydraulic system diseases.
1 As result of heat transmission medium (hydraulic oil) in the flow velocity in various parts of the existence of different, resulting in the existence of a liquid within the internal friction of liquids and pipelines at the same time there is friction
between the inner wall, which are a result of hydraulic the reasons for the oil temperature. Temperature will lead to increased internal and external leakage, reducing its mechanical efficiency. At the same time as a result of high temperature, hydraulic oil expansion will occur, resulting in increased compression, so that action can not be very good control of transmission. Solution: heat is the inherent characteristics of the hydraulic system, not only to minimize eradication. Use good quality hydraulic oil, hydraulic piping arrangement should be avoided as far as possible the emergence of bend, the use of high-quality pipe and fittings, hydraulic valves, etc.
2 The vibration of the vibration of the hydraulic system is also one of its malaise. As a result of hydraulic oil in the pipeline flow of high-speed impact and the control valve to open the closure of the impact of the process are the reasons for the vibration system. Strong vibration control action will cause the system to error, the system will also be some of the more sophisticated equipment error, resulting in system failures. Solutions: hydraulic pipe should be fixed to avoid sharp bends. To avoid frequent changes in flow direction, can not avoid damping measures should be doing a good job. The entire hydraulic system should have good damping measures, while avoiding the external local oscillator on the system.
3 The leakage of the hydraulic system leak into inside and outside the leakage. Leakage refers to the process with the leak occurred in the system, such as hydraulic piston-cylinder on both sides of the leakage, the control valve spool and valve body, such as between the leakage. Although no internal leakage of hydraulic fluid loss, but due to leakage, the control of the established movements may be affected until the cause system failures. Outside means the occurrence of leakage in the system and the leakage between the external environments. Direct leakage of hydraulic oil into the environment, in addition to the system will affect the working environment, not enough pressure will cause the system to trigger a fault. Leakage into the environment of the hydraulic oil was also the danger of fire. Solution: the use of better quality seals to improve the machining accuracy of equipment.
In the hydraulic system and its system,the sealing device to prevent leakage of the work of media within and outside the dust and the intrusion of foreign bodies. Seals played the role of components, namely seals. Medium will result in leakage of waste, pollution and environmental machinery and even give rise to malfunctioning machinery and equipment for personal accident. Leakage within the hydraulic system will cause a sharp drop in volumetric efficiency, amounting to less than the required pressure, can not even work. Micro-invasive system of dust particles can cause or exacerbate friction hydraulic component wear, and further lead to leakage.
Therefore, seals and sealing device is an important hydraulic equipment component. The reliability of its work and life is a measure of the hydraulic system an important indicator of good or bad. In addition to the closed space, are the use of seals, so that two adjacent coupling surface of the gap between the need to control the liquid can be sealed following the smallest gap. In the contact seal, pressed into self-seal-style and self-styled self-tight seal (is, sealed lips) two.
收藏