油泵齿轮压装机设计【三维CATIA模型】【含11张CAD图纸】
喜欢就充值下载吧,,资源目录下展示的全都有,,下载后全都有,dwg格式的为CAD图纸,有疑问咨询QQ:414951605 或1304139763
长春工程学院
2020届毕业设计(论文)指导教师资格及题目审批表
指导教师姓名
王利涛
所在单位
机电学院
指导教师职称
副教授
所学专业
机制
设计(论文)题目
油泵齿轮压装机设计
题 目 类 型
设计
√
题 目
来 源
科 研
实验室建设
论文
工程生产
√
自 拟
题目真实性程度
真实
√
题目新旧
新题
难度
等级
难
一般
模拟
旧题
√
较难
√
设计(论文)地点
校内
√
设计(论文)时间
自03月 2 日
至06 月12日
校外
题目概要(设计(论文)的目的、可行性、技术路线等):
本题目来源于吉林长久三美机械设备有限公司,机油泵齿轮压装机设计是应用专业知识完成一台自动化压装设备设计,该设备用于机油泵装配流水线上。通过该设计题目,使学生在设备总体方案设计、机械结构设计、气液动系统设计、电控系统设计以及零件强度计算、编写技术文件、查阅文献和设计软件应用能力方面受到一次综合训练,巩固和综合运用所学知识,掌握正确设计思想与方法,培养学生的工程应用能力。
机油泵齿轮压装机需要完成机油泵主动齿轮与轴、从动齿轮与轴的压装工作,要求工件夹具使用方便可靠、压装位置准确,压装力可检测,工作台高度位置可调以适应不同型号机油泵齿轮轴总成压装,压装力可用电机或气动实现,工作过程有安全保护。齿轮与轴的装配工艺与技术要求见附件。
技术路线:
(1)压装机总体方案设计。
(2)机械总装配设计、零件详细结构设计。
(3)气动或电动系统设计及计算。
(4)控制部分选型及设计。
(5)二维工程图设计与说明书。
成果:设备总装配图(计算机出图);设备所有零件图(计算机出图);手绘图A1张;设计图纸数量不少于3张A0 图纸;设计说明书1.5万字;译文与开题报告不少于3000字.
教研室意见:
教研室主任签字:
2020年3月 1 日
学院(系)审查意见:
院长(系主任)签字:
年 月 日
备注:1.此表由拟担任毕业设计(论文)指导工作的教师填写,每个题目填报一张表,一式两份;
2.部分分项填写时,只在对应项内打“√”即可;
3.表中真实题目是指在学校、生产、科研及其它单位实际立项的课题;
4.指导教师如果是外聘,应在所在单位栏中加注(外聘)字样;
5.在毕业设计(论文)工作开始前,各院(系)将此表汇总,报教务处备案。
油泵齿轮压装机答辩人:黎航导师:王利涛长春工程学院CONTENTS目 录01绪 论02工作原理03安全与解决方案04总结绪 论Thread theory0101选题背景THE BACKGROUND 由于我国工业基础溥弱,油泵齿轮行业起步较慢,虽然其发展速度比较快。经由二十余年消化吸收国外提高前辈技术以及自主立异。我国油泵齿轮设备制造行业也有了奔腾发展。但相对于世界上一些工业发达国家而已,我国还是有待提升的,随着工业的发展,压装机也随着对工业技术的发展而达到了一个理想的工艺范围。油泵齿轮压装机02研究内容与要求 本题目来源于吉林长久三美机械设备有限公司,机油泵齿轮压装机设计是应用专业知识完成一台压装设备设计,该设备用于机油泵装配流水线上。要求机油泵齿轮压装机能完成机油泵主动齿轮与轴、从动齿轮与轴的压装工作,要求工件夹具使用方便可靠、压装位置准确,压装力可检测,工作台高度位置可调以适应不同型号机油泵齿轮轴总成压装,压装力可用电机或气动实现,工作过程有安全保护。03研究综述问题1问题2问题3问题4压装精度不高,不能保证油泵齿轮压装精度。其对不同型号的油泵齿轮压装时,需要人工手动更换底盘,生产效率低。人工更换夹具,轴位差很难控制,更难满足油泵齿轮的生产精度要求。生产效率低,一次压装合格率低,压装的质量受人为影响很大。目前,国内一些主要汽车生产厂家使用的油泵齿轮压装机,在设备上还停留在五,六十年代的水平,结构简单,性能单一,生产效率低,设备完全靠人工控制,尺寸精度只能控制在2mm范围内,控制系统落后,手动操作,人工检测,不但人工劳动强度大,而且生产效率低。而且还存在以下问题:04压装设备和总体方案设计机械系统主要由压装装置、工件的定位和夹紧装置、等组成。在压装机升降部分采用导柱来进行升降,油泵齿轮在工作台面上利用定位夹爪来进行夹持,上方轴套通过定位后,由压装机头透过导套来实现压装作业工作,侧方传感器来检测压装工作的强度,完成压装过程。05压装零件与技术要求1.满足工作需求,稳定性好结构准确性高。2.操作调整方便,设计成本不易过高,外观尽量美观简洁。3.齿轮轴定位板,应满足承受轴向力作用。4.夹具定位精度:0.01mm。5.压装机立柱滑动部分,直线行程误差0.01mm。6.压装机重复压装精度:0.01mm。7.压装机上压板应同步下压。8.保证操作工人的生命安全。工作原理0201夹具部分齿轮定位夹爪压装底座压装底座立板压装底座台板夹具部分的工作原理:先将齿轮放置在压装底座台板的凹陷处,由于附件安装了光电传感器,当感应到放入齿轮后,会转化为电信号传送给气动装置,气动装置传动给气动手指,气动手指控制齿轮定位夹爪夹紧齿轮,然后将压装轴通过轴套固定在竖直方向。准备进行压装工作轴套气动手指02压装部分电缸电缸导杆电缸连接板压装转接板压装轴固定板压装轴压装部分的工作原理:先按启动按钮,伺服电机开始工作,将旋转运动转化为电缸竖直方向的直线运动,从而使电缸导杆向下运动,带动压装轴向下运动,完成压装齿轮与轴的工作,而为了确定齿轮在压装轴过程中的压紧力与位移量,在其右侧感应器固定板中装有压力传感器和位置传感器进行测量,然后将信息反馈给伺服电机进行调整,防止出现问题。感应器固定板安全与解决方案0301防护网 在工业技术如此发达的时代,我们不仅仅要做到技术方面的提高,在安全意识方面,我们也应该尽力保证每个工人的安全,如右图所示,在压装机两边安装上钢丝的防护网,可以有效的避免压装过程中设备出现问题而导致的伤亡事故。例如压装时零件崩断弹出等。02启动开关按钮 为了避免工人在一边操作机器一边启动按钮的时候存在的安全隐患,将启动按钮设置为两个串联的开关,在启动时需要同时按下两个按钮才能将设备启动,这样就杜绝了工人因为误按按钮而导致的事故总 结Summary0401研究总结STUDY CONCLUDED本次设计最后得出的结果无论是对工业产业的发展,还是对安全因素的考虑都是十分重要的。对装配设计的安装方面设计及控制系统有更深入的了解,同时对机械原理、机械制图等专业知识有了更全面的掌握。由于知识方面的不足,因此在选择传动系统及电气控制存在着不足,尺寸公差间存在着差异,希望老师们给予批评和指正。02致谢ACKNOWLEDGEMENTS 大学的四年学习时光转瞬即逝,我的毕业设计也接近了尾声。在大学的最后一年里,经过自己的努力,毕业设计的内容终于快要完成了,这是对我大学四年所学知识最好的一次总结和考验。在没有开始做毕业设计之前,对大学所学知识的检验只有期末考试,但是期末考试只是针对单一学科的考核。在做毕业设计之后,我发现要很好的完成毕业设计的内容,需要对多门学科的知识进行综合的应用。这种综合应用是对我所学知识的一种综合的再学习以及再提高的过程,这一过程对我的学习能力,独立思考,多学科综合能力以及工作能力都是一种培养。另外在做毕业设计的过程中,我认识到学习是一个长期积累的过程,大学学习的结束并不意味着自身专业知识学习的结束,而是一个新的开始。致谢!
CHANGCHUN INSTITUTE OF TECHNOLOGY
毕业设计任务书
论文题目:______油泵齿轮压装机设计 __
学生姓名: 黎航
学院名称: 长春工程学院国际学院
专业名称: 机械设计制造及其自动化
班级名称: 机制1646
学 号: 1622421616
指导教师: 王利涛
教师职称: 副教授
学 历: 硕士
2020年3月1日
长春工程学院
毕业设计任务书
国际学院 学院 机制 专业 2020 届
题 目
油泵齿轮压装机设计
专业班级
机制1646
学生姓名
黎航
指导老师
王利涛
任务书下发日期
2020-3-2
设计截止日期
2020-6-12
难度系数
较难
毕业设计(论文)的主要内容:
本题目来源于吉林长久三美机械设备有限公司,机油泵齿轮压装机设计是应用专业知识完成一台压装设备设计,该设备用于机油泵装配流水线上。通过该设计题目,使学生在设备总体方案设计、机械结构设计、气液动系统设计、电控系统设计以及零件强度计算、编写技术文件、查阅文献和设计软件应用能力方面受到一次综合训练,巩固和综合运用所学知识,掌握正确设计思想与方法,培养学生的工程应用能力。
机油泵齿轮压装机能完成机油泵主动齿轮与轴、从动齿轮与轴的压装工作,要求工件夹具使用方便可靠、压装位置准确,压装力可检测,工作台高度位置可调以适应不同型号机油泵齿轮轴总成压装,压装力可用电机或气动实现,工作过程有安全保护。
毕业设计(论文)的主要要求:
设计完成
(1)机油泵齿轮压装机总体方案设计;(2)机械总装配设计、零件详细结构设计;(3)气动或电动系统设计及计算;(4)控制部分选型及设计(选作)。
设计要求:
(1齿轮轴定位板应满足承受轴向力作用;(2)夹具定位精度≤0.01 mm ;(3)压装机立柱滑动部分直线行程误差≤0.0lmm;(4)压装机重复压装精度≤0.0lmm;(5)压装机上压板应同步下压;(6)保证操作工人的生命安全;
齿轮与轴的装配工艺与技术要求文件见附件。
设备总装配图(计算机出图);设备所有零件图(计算机出图);手绘图A1张;设计图纸数量不少于3张A0 图纸;设计说明书1.5万字;译文与开题报告不少于3000字;
主要参考文献:
[1]吴忠泽.机械设计.北京:高等教育出版社.2006.
[2]何忠保,陈晓华,王秀英.典型零件图册.北京:机械工业出版社.2000.
[3] 胡宗武《非标准机械设备设计手册》机械工业出版社.北京: 2005.
[4]机械原理 蒲良贵.机械原理 .北京:高等教育出版社.2011.
任务书编制教师(签章):
2020年 3 月1日
教研室审核意见:
教研室主任(签章): 2020 年 3 月 1 日
学院审核意见:
学院院长(签章): 年 月 日
备注
注:任务书中的数据、图表及其他文字说明可作为附件附在任务书后面,并在主要要求中标明:“见附件”
CHANGCHUN INSTITUTE OF TECHNOLOGY
开题报告
设计题目: 油泵齿轮压装机
学生姓名: 黎航
学院名称: 国际教育学院
专业名称: 机械设计制造及自动化
班级名称: 机制1646
学 号: 1622421616
指导教师: 王利涛
教师职称: 副教授
学 历: 硕士
2020年 03 月 15 日
1、课题论证
1.1课题研究的目的与意义
由于我国工业基础溥弱,油泵齿轮行业起步较慢,但其发展速度比较快。经由二十余年消化吸收国外提高前辈技术以及自主立异。我国油泵齿轮设备制造行业有了奔腾发展。
油泵齿轮是依靠泵缸与啮合齿轮间所形成的工作容积变化和移动来输送液体或使之增压的回转泵。由两个齿轮、泵体与前后盖组成两个封闭空间,当齿轮转动时,齿轮脱开侧的空间的体积从小变大,形成真空,将液体吸入,齿轮啮合侧的空间的体积从大变小,而将液体挤入管路中去。吸入腔与排出腔是靠两个齿轮的啮合线来隔开的。油泵齿轮的排出口的压力完全取决于泵出处阻力的大小。齿轮油泵由独立的电机驱动,有效地阻断上游的压力脉动及流量波动。
在化工和石油部门的生产中,原料、半成品和成品大多是液体,而将原料制成半成品和成品,需要经过复杂的工艺过程,泵在这些过程中起到了输送液体和提供化学反应的压力流量的作用,此外,在很多装置中还用泵来调节温度。在船舶制造工业中,每艘远洋轮上所用的泵一般在百台以上,其类型也是各式各样的。其它如城市的给排水、蒸汽机车的用水、机床中的润滑和冷却、纺织工业中输送漂液和染料、造纸工业中输送纸浆,以及食品工业中输送牛奶和糖类食品等,都需要有大量的泵。 在农业生产中,泵是主要的排灌机械。我国农村幅原广阔,每年农村都需要大量的泵,一般来说农用泵占泵总产量一半以上。在矿业和冶金工业中,泵也是使用最多的设备。矿井需要用泵排水,在选矿、冶炼和轧制过程中,需用泵来供水洗等。在电力部门,核电站需要核主泵、二级泵、三级泵、热电厂需要大量的锅炉给水泵、冷凝水泵、循环水泵和灰渣泵等。在国防建设中,飞机襟翼、尾舵和起落架的调节、军舰和坦克炮塔的转动、潜艇的沉浮等都需要用泵。高压和有放射性的液体,有的还要求泵无任何泄漏等.。总之,无论是飞机、火箭、坦克、潜艇、还是钻井、采矿、火车、船舶,或者是日常的生活,到处都需要用泵,到处都有泵在运行。正是这样,所以把泵列为通用机械,它是机械工业中的一类重要产品。
而在泵在安装过程中,我们要用到压装机,它也是泵在制造过程中不可或缺的一部分,而我此次的任务就是完成油泵齿轮压装机的设计,在任务开始之前,我们得先了解油泵齿轮压装机的设计原则:
1 工作可靠
可靠的操作意味着它通常可以在其寿命范围内发挥其功能。每个部件必须具有装置内的某些功能,一些主要部件在装置的正常操作中起决定性作用。机器零件的设计应在机构设计系统中进行需要通过科学设计来确保机器零件的可靠性。经营者必须在劳动力范围内,其作业如果没有环境污染、小容量、安全性、便利的整备、环境的变化等,则必须简单。
2 便于加工装配
机器零件缩短制造周期,提高企业响应速度,提高企业竞争力,降低成本。
3 经济性好
在满足客户要求的情况下尽量降低加工费用。
4 符合有关标准
在设计过程中,我们必须遵守国家的法令,如标准、专利法、商标法等,尽量提高产品质量,合理简化品种,缩短设计和制造周期,降低制造成本,保护环境。
1.2文献综述(相关课题国内外研究的现状)
目前,国内一些主要汽车生产厂家使用的油泵齿轮压装机,在设备上还停留在五,六十年代的水平,结构简单,性能单一,生产效率低,设备完全靠人工控制,尺寸精度只能控制在2mm范围内,控制系统落后,手动操作,人工检测,不但人工劳动强度大,而且生产效率低。压装精度不高,如何保证油泵齿轮压装精度,这是目前国内外的研究设计人员思考的问题。再有,其对不同型号的油泵齿轮压装时,需要人工手动更换底盘,生产效率低。这样的压装延用了很多年,毫无大的改进,这种压装机的最大缺点是人工更换夹具,轴位差很难控制,更难满足油泵齿轮的生产过程中的精度要求,且生产效率低,一次压装合格率低,压装的质量受人为影响很大。鉴于以上各点,得出结论,此类型油泵齿轮压装设备已不能满足生产人员对油泵齿轮压装的过程和结果的最基本要求,还待进行设备更新。
1.3课题研究的内容、总体方案及技术路线、进度安排等
研究内容:
通过本次设计题目,使学生在设备总体方案设计、机械结构设计、气液动系统设计、电控系统设计以及零件强度计算、编写技术文件、查阅文献和设计软件应用能力方面受到一次综合训练,巩固和综合运用所学知识,掌握正确设计思想与方法,培养学生的工程应用能力。
油泵齿轮压装机能完成主动齿和从动齿与轴的压装工作,以保证工作效率的提高。压装位置准确,压装力可检测,工作台高度位置可调以适应不同型号油泵齿轮压装,压装力可用电机或气动实现,工作过程有安全保护。
总体方案:
根据现在市场的情况,油泵齿轮压装机一般为立式压装结构,采用上压下装的设计方式,通过电机带动压缸向下运动进行压装,下部分则固定好被压装零件,从而完成压装工作。其中机械系统主要由压装装置、工件的定位和夹紧装置、等组成。在压装机升降部分采用导柱来进行升降,提升功能有两个优点。一是提高冲压安装效率。压板安装机不仅可以按压油泵的齿轮组件,而且形状很大,但也可以完成对具有低精度要求的若干工件的压板安装。压入部件的尺寸通常非常小,匹配对环的高度也非常低,减少头的移动的距离很长。位移提升单元可以适当地快速调整压力头,并且可以大大提高冲压安装效率。第二是克服冲床支架的缺点,降低压床精度。油泵齿轮在工作台面上利用定位夹爪来进行夹持,上方轴套通过定位后,由压装机头透过导套来实现压装作业工作,侧方传感器来检测压装工作的强度,完成压装过程。
技术路线:
1、满足工作需求,稳定性好结构准确性高。
2、操作调整方便,设计成本不易过高,外观尽量美观简洁。
3、应满足承受轴向力作用,齿轮轴定位板。
4、夹具定位精度:≤0.01mm。
5、直线行程误差≤0.01mm,压装机立柱滑动部分。
6、压装机重复压装精度:≤0.01mm。
7、压装机上压板应同步下压。
8、保证操作工人的生命安全。
进度安排:
时间
设计任务及要求
第1周
去图书馆找相关的书籍并进行分析、查阅资料,熟悉设备技术要求、背景,学习与毕业设计相关知识,做好前期准备工作。
第2周
上网搜索相关论文,报告,期刊等,做到熟悉自己设计的设备具体内容,撰写开题报告和外文翻译,准备开题报告答辩PPT。
第3周
进行总体方案设计,计算压装,传动等压装机与有关各个方面的计算。
第4周
对压装机结构进行设计,设计压装机整体结构尺寸,计算并校核压装机的尺寸,保证并确定每个零件的尺寸大小。
第5周
开始进行外购件的选型厂家等。
第6周
先进行压装机机架部分的三维设计,并归类好零件。
第7周
进行压装机压装部分的三维设计,并整理好零件。
第8周
进行压装机夹具部分的三维设计,并整理好零件归类。
第9周
进行压装机升降部分的三维设计,并归类零件。
第10周
将压装装机各个部分进行装配得到完整压装机三维结构,并得出工程图交由老师审核,进行修改。
第11周
编写设计说明书。
第12周
编写设计说明书。
第13周
编写设计说明书,交由老师审核并进行修改。
第14周
制作答辩提纲,设计定稿,打印,准备毕业设计答辩。
第15周
进行毕业设计答辩。
1.4注意存在的问题
1. 首先要保证人工操作时的人身安全,保证工人的安全为首要注意问题,要保证工人在开启机器,运行机器,关闭机器时,机器一直处于安全状态,要将人的安全放在首位。
2. 其次是非常重要的环保问题,设计时一定要注意符合绿色环保的标准,尽量减少对大自然环境的污染。
3. 压装部分采用气缸的结构,对结构密封性,精度要求比较高,装配过程也比较大,压装机结构有待进一步改善。
4. 油泵齿轮与轴之间属于过盈配合,靠手工难以装配,即使借助于专用夹具也很难准确、可靠的定位。
5.在整个压装过程中,很难保证零件已加工表面的质量,这就保证不了产品的质量。
1.5参考文献
[1] 徐灏. 机械设计手册[M] 第(三、四、五)册.北京:机械工业出版
[2] 何忠保,陈晓华,王秀英.典型零件图册.北京:机械工业出版社, 2000 .
[3] 胡宗武《非标准机械设备设计手册 》 机械工业出版社.北京: 2005 .
[4] 机械原理蒲良贵.机械原理.北京:高等教育出版社 2011 .
[5] 吴忠泽 机械设计 北京;高等教育出版社2006
徐灏. 机械设计手册[M] 第(三、四、五)册.北京:机械工业出版
2、答辩组论证结论
(1)方案可行,技术路线清晰 □ (2)方案可行,技术路线基本清晰 □
(3)方案基本可行,技术路线不很清晰 □ (4)方案和技术路线不很清晰 □
(5)方案和技术路线不清晰 □
3、指导教师意见: 教研室主任意见:
指导教师(签名): 王利涛 教研室主任(签名):
2020年 06 月 04 日 年 月 日
注:(1) 开题报告是用文字体现的设计(论文)总构想,篇幅不必过大,但要把计划设计的课题、如何设计、理论依据和研究现状等主要问题说清楚;
(2) 字数不少于3000字,参考文献不少于6篇,印刷字符在10万印刷符以上。
油泵齿轮压装机PROFESSIONAL POWERPOINT TEMPLATE姓名:黎航|导师:王利涛01|研究背景及意义02|论文综述03|研究过程及方法CONTENTS目录研究背景及意义Part 01研究背景及意义由于我国工业基础溥弱,油泵齿轮行业起步较慢,但其发展速度比较快。经由二十余年消化吸收国外提高前辈技术以及自主立异。我国油泵齿轮设备制造行业有了奔腾发展。油泵齿轮是依靠泵缸与啮合齿轮间所形成的工作容积变化和移动来输送液体或使之增压的回转泵。由两个齿轮、泵体与前后盖组成两个封闭空间,当齿轮转动时,齿轮脱开侧的空间的体积从小变大,形成真空,将液体吸入,齿轮啮合侧的空间的体积从大变小,而将液体挤入管路中去。吸入腔与排出腔是靠两个齿轮的啮合线来隔开的。油泵齿轮的排出口的压力完全取决于泵出处阻力的大小。齿轮油泵由独立的电机驱动,有效地阻断上游的压力脉动及流量波动。45%论文综述Part 02论文综述4目前,国内一些主要汽车生产厂家使用的油泵齿轮压装机,在设备上还停留在五,六十年代的水平,结构简单,性能单一,生产效率低,设备完全靠人工控制,尺寸精度只能控制在2mm范围内,控制系统落后,手动操作,人工检测,不但人工劳动强度大,而且生产效率低。压装精度不高,如何保证油泵齿轮压装精度,这是目前国内外的研究设计人员思考的问题。再有,其对不同型号的油泵齿轮压装时,需要人工手动更换底盘,生产效率低。这样的压装延用了很多年,毫无大的改进,这种压装机的最大缺点是人工更换夹具,轴位差很难控制,更难满足油泵齿轮的生产过程中的精度要求,且生产效率低,一次压装合格率低,压装的质量受人为影响很大。鉴于以上各点,得出结论,此类型油泵齿轮压装设备已不能满足生产人员对油泵齿轮压装的过程和结果的最基本要求,还待进行设备更新。2研究过程及方法Part 03研究内容通过本次设计题目,使学生在设备总体方案设计、机械结构设计、气液动系统设计、电控系统设计以及零件强度计算、编写技术文件、查阅文献和设计软件应用能力方面受到一次综合训练,巩固和综合运用所学知识,掌握正确设计思想与方法,培养学生的工程应用能力。油泵齿轮压装机能一次性完成主动齿和从动齿与轴的压装工作,以保证工作效率的提高。压装位置准确,压装力可检测,工作台高度位置可调以适应不同型号油泵齿轮压装,压装力可用电机或气动实现,工作过程有安全保护。总体发案Six StepsProcess根据现在市场的情况,油泵齿轮压装机一般为立式压装结构,采用上压下装的设计方式,通过电机带动压缸向下运动进行压装,下部分则固定好被压装零件,从而完成压装工作。其中机械系统主要由压装装置、工件的定位和夹紧装置、等组成。在压装机升降部分采用导柱来进行升降,提升功能有两个优点。一是提高冲压安装效率。压板安装机不仅可以按压油泵的齿轮组件,而且形状很大,但也可以完成对具有低精度要求的若干工件的压板安装。压入部件的尺寸通常非常小,匹配对环的高度也非常低,减少头的移动的距离很长。位移提升单元可以适当地快速调整压力头,并且可以大大提高冲压安装效率。第二是克服冲床支架的缺点,降低压床精度。油泵齿轮在工作台面上利用定位夹爪来进行夹持,上方轴套通过定位后,由压装机头透过导套来实现压装作业工作,侧方传感器来检测压装工作的强度,完成压装过程。技术路线1.满足工作需求,稳定性好结构准确性高。2.操作调整方便,设计成本不易过高,外观尽量美观简洁。3.应满足承受轴向力作用,齿轮轴定位板。4.夹具定位精度:0.01mm。5.直线行程误差0.01mm,压装机立柱滑动部分。6.压装机重复压装精度:0.01mm。7.压装机上压板应同步下压。8.保证操作工人的生命安全。致谢语 大 义 之 方,论 万 物 之 理 。受 益 终 身!T H A N K S长春工程学院
毕业设计(论文)开题报告审核表
指导教师姓名
王利涛
所在单位
国际教育学院
指导教师职称
副教授
所学专业
机械设计制造及自动化
学 生 姓 名
黎航
班 级
机制1646
设计(论文)题目
油泵齿轮压装机
指导教师审查
意见
指导教师签字:王利涛
2020 年 06 月 04 日
教研室审查意见
教研室主任签字:
年 月 日
学院审查意见
院长签字:
年 月 日
CHANGCHUN INSTITUTE OF TECHNOLOGY
油泵齿轮压装机设计
设计题目: 油泵齿轮压装机设计
学生姓名: 黎航
学院名称: 国际教育学院
专业名称: 机械设计制造及自动化
班级名称: 机制1646
学 号: 1622421616
指导教师: 王利涛
教师职称: 副教授
完成时间: 2019.03.04-2019.05.31
2019年5月31日
毕业设计(论文)
油泵齿轮压装机设计
Design of Press Mounting Machine for Oil Pump Gear
学生姓名: 黎航
学历层次: 本 科
所在院系: 国际教育学院
所学专业: 机械设计制造及自动化
指导教师: 王利涛
教师职称: 副教授
完成时间: 2019.05.31
长 春 工 程 学 院
Liand Hao Chin. J. Mech. Eng. (2019) 32:54 https:/doi.org/10.1186/s10033-019-0369-zORIGINAL ARTICLEOn Generating Expected Kinetostatic Nonlinear Stiffness Characteristics bytheKinematic Limb-Singularity ofaCrank-Slider Linkage withSpringsBaokun Li1 and Guangbo Hao2*Abstract Being different from avoidance of singularity of closed-loop linkages, this paper employs the kinematic singularity to construct compliant mechanisms with expected nonlinear stiffness characteristics to enrich the methods of compli-ant mechanisms synthesis. The theory for generating kinetostatic nonlinear stiffness characteristic by the kinematic limb-singularity of a crank-slider linkage is developed. Based on the principle of virtual work, the kinetostatic model of the crank-linkage with springs is established. The influences of spring stiffness on the toque-position angle relation are analyzed. It indicates that corresponding spring stiffness may generate one of four types of nonlinear stiffness characteristics including the bi-stable, local negative-stiffness, zero-stiffness or positive-stiffness when the mechanism works around the kinematic limb-singularity position. Thus the compliant mechanism with an expected stiffness characteristic can be constructed by employing the pseudo rigid-body model of the mechanism whose joints or links are replaced by corresponding flexures. Finally, a tri-symmetrical constant-torque compliant mechanism is fabricated, where the curve of torque-position angle is obtained by an experimental testing. The measurement indicates that the compliant mechanism can generate a nearly constant-torque zone.Keywords: Kinematic singularity, Mechanism with springs, Kinetostatic model, Nonlinear stiffness The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http:/creat iveco mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.1 IntroductionA mechanism with springs is defined as a rigid-body linkage whose joints are placed springs. For this type of mechanisms, the kinetostatic driving force/torque of this type of mechanisms is nonlinear with respect to the position parameter. The nonlinear relation between the driving force/torque and the position parameter is called kinetostatic nonlinear stiffness characteristic. The mech-anism with springs possessing this characteristic can be applied in constant force mechanism 1, vibration isola-tor 2 and gravity balancer 3. The mechanism attached springs is often used in the type synthesis of compli-ant mechanisms based on the rigid-body replacement method and the compliant mechanisms analysis based on the pseudo-rigid-body model 46. Compliant mecha-nisms can be fabricated in monolithic and are applied in many applications needing high precision because of absence of backlash and friction 7, such as energy har-vester based on buckled beam 8, 9, micro-switch 10 and high accurate driver 11. However, the buckled beam only generates bi-stability but other nonlinear stiff-ness characteristics. Moreover, the mechanical model of bi-stable buckled beam is very complicated 12, 13. The four-bar linkage with placed springs can be used to design compliant mechanisms with bi-stable behavior by employing pseudo-rigid-body replacement 14, which develops the configuration of the bi-stable mechanism.When the rigid-body replacement method is use to synthesize compliant mechanisms processing corre-sponding performance, designers should grasp series of performances of the rigid-body linkage. Thus one should have much experience on linkage design and Open AccessChinese Journal of Mechanical Engineering*Correspondence: G.Haoucc.ie 2 School of Engineering, University College Cork, Cork T12K8AF, IrelandFull list of author information is available at the end of the articlePage 2 of 16Liand Hao Chin. J. Mech. Eng. (2019) 32:54 performance analysis. Therefore, it is meaningful that some common attributes are used to construct compliant mechanisms with nonlinear stiffness characteristic.Kinematic singularity which is a basic property of link-ages affects the performance of linkages seriously, so many scholars pay much attention on singularity distri-bution, singularity property identification and singular-ity avoidance 15, 16. However, kinematic singularity has two sides, and can be used to construct new types of devices. Kinematic singularity of the spatial parallel link-age whose links are connected by universal joints are used to construct several types of reconfigurable parallel mech-anisms 17. When parallel mechanisms work near the singularity, they are sensitive to external load. This prop-erty is applied to design the force sensors 18, 19. A new compliant mechanism with negative-stiffness characteris-tic is synthesized by using kinematic singularity of a four-bar linkage 20. The planar parallelogram linkage when the two cranks are collinear is used to construct a type of reconfigurable compliant gripper by applying rigid-body replacement method 21. A new medical device is designed by using the property that a parallel mechanism obtains an additional freedom when it is singular 22.In this paper, by the crank-slider mechanism with springs as an example, the kinematic limb-singularity which is a common property of rigid-body linkages, is used to con-struct the kinetostatic nonlinear stiffness characteristic. The rest of the paper is organized as follows: Section2 addresses the kinetostatic model of the mechanism and Section 3 classifies nonlinear stiffness characteristics as four types. Section4 analyzes the influences of spring stiff-ness on the nonlinear stiffness characteristics generated by the mechanism when moves from nonsingular position and passes the kinematic limb-singularity position. Sec-tion5 indicates that the mechanism only produces posi-tive-stiffness characteristic when moves from the kinematic limb-singularity position to nonsingular position. Section6 describes the approach by creating an expected zero-stiff-ness (constant-torque) characteristic of the mechanism working around the kinematic limb-singularity position. In Section7, design of a nonlinear compliant mechanism is further discussed and is validated by the experimental test-ing. Finally, Section8 draws some important conclusions.2 Kinetostatic Model oftheMechanismFigure 1 shows the schematic of the crank-slider mechanism with springs. Crank AB rotates about pin joint A in anticlockwise and drives the slider to moves along the horizontal line, where link AB and slider are connected by coupler BC. Three pin joints are placed torsional springs whose stiffness is KRA, KRB and KRC, respectively. Prismatic joint C is added extension spring whose stiffness is KPC.The Cartesian coordinates system, O-xyz, is attached on the base, where origin O is fixed on point A, the pos-itive direction of x-axis points to the horizontal right, the positive direction of y-axis is vertically up, and z-axis is determined by the right-hand rule.Vectors AB and BC are defined by r1 and r2, respec-tively. Projects of vector position C on the x-axis and y-axis with respect to the frame O-xyz are defined by r3 and e, respectively. Scalars r1 and r2 are lengths of links AB and BC, respectively. Scalars r3 and e are the coor-dinates of point C on the x-axis and y-axis, respectively. Link-length, r1 and r2, and offset, e, should satisfyso as to allow the mechanism to pass through the right limiting position, which is called the kinematic limb-sin-gularity and occurs when the crank and coupler are along the same line.Here we suppose that there is no friction and clear-ance between any two links connected by a kinematic pair. Moreover, we only discuss the kinetostatic model of the mechanism during the motion rather than con-sidering any inertial force/torque and gravity caused by links quality.The driving torque applied on link AB is set aswhere vector k is the unit vector of z-axis (vectors i and j are unit vectors of x-axis and y-axis, respectively). Torque vector Td is along the z-axis, scalar |Td| is the magni-tude of driving torque Td, where Td 0 indicates Td is along the positive direction of z-axis and Td 0 corre-sponds to direction of Td pointing to negative z-axis.The angular displacement of pin joint A iswhere A is the rotation angle of x-axis to link AB and indicates the input position angle of link AB, A0 cor-responds to the initial angle. In this paper, value of A allows no spring lose efficacy.Here we consider A as the general coordinate of the mechanism. Thus the virtual angular displacement of joint A is(1)(r1+ r2) e 0,Td= dU?dA=0,dTd?dA=d2U?d2A 0.(13a)A= arcsiner1 r2,(13b)A= arcsiner1+ r2.Td /Ua bcTmaxTminUmaxUmin2Td-AU-AUmin1Stable positionUnstable positionA0Stable positionFigure2 Torque/energy versus position anglesPage 5 of 16Liand Hao Chin. J. Mech. Eng. (2019) 32:54 Equation (7a) can lead to the following expressionEquation (14) indicates that when the mechanism locates at the two limiting positions represented by Equa-tions (13a) and (13b), the following expression is truewhich indicates that the ratio between the output velocity and the input velocity is zero and is called the kinematic limb-singularity 24.Figure3 shows the motion of the mechanism which works around the right limiting position which is also one of the two kinematic limb-singularity positions. The mechanism moves from the initial non-singular position with no deflected springs (Figure3(a), passes the kin-ematic limb-singularity position (Figure3(b) and then arrives at the end non-singular position (Figure 3(c). During the motion as Figure 3 shows, the potential energy of the spring placed at joint C increases from zero to the maximum and then falls to zero. Thus if the stiffness of the torsional springs are not too large, the potential energy of the mechanism may have one local maximum and two local minimums, which correspond to the unstable position (b as shown in Figure3) and two stable positions (a and c as Figure3 shows). This kine-tostatic nonlinear stiffness characteristic is called the bi-stable characteristic.(14)dr3?dA= r1sinA b?a.(15)dr3?dA= 0If and only if the pin joints are attached springs, the mechanism does not exhibit the phenomenon that the potential energy increases firstly and then decreases, which means that there is no maximal potential energy during the motion because the pint joints rotate in one direction during the motion. Thus, the mechanism only produces the positive-stiffness characteristic but does not generate the bi-stable characteristic.According to Eqs. (10) and (11), the driving torque is to resist the all of the force/torque caused by all of the springs and the total potential energy of the mecha-nism is the sum of the potential energy of each spring. In other words, the mechanism may produce four types of kinetostatic nonlinear stiffness characteristics which are determined by the stiffness of springs placed at the joints.Four nonlinear stiffness characteristics including bi-stable characteristics, local negative-stiffness char-acteristic, local zero-stiffness characteristic and posi-tive-stiffness characteristic are shown in Figure4, which describes the driving torque varies with the input posi-tion angle, A. Unlike a generic elastic spring or structure, the driving force/torque applied on the mechanism with springs does not obey the Hookes law. If the mechanism is carried out the motion as Figure3(a)3(c) shows, it may produce four types of nonlinear stiffness character-istics depicted by Figure4(a)(d), which are addressed as follows: (1) Figure 4(a) describes the bi-stable characteristic which includes three domains, where domains i and iii are positive-stiffness and domain ii is nega-tive-stiffness. As Tdmax Tdmin 0. Thus we can conclude that the mechanism is located at the local minimal energy point when A = A1 and A = A3, respectively. According to Ref.28, the mechanism is in equilibrium when A = A1 and A = A3 corresponding to a and c as Figure2 shows, respectively.Differentiating Eq. (16) with respect to A yieldsC1= 4r31cosA0sin3A0 10er21cosA0sin2A0+ 8e2r1cosA0sinA0 r31cosA0sinA0 3r1r22cosA0sinA0 2e3cosA0+ 2er21cosA0+ 2er22cosA0,C2= a0?4r21sin3A0 6er1sin2A0+ 2e2sinA03r21sinA0 r22sinA0+ 4er1?,C3= 4r31sin4A0+ 10er21sin3A0 8e2r1sin2A0+ 5r31sin2A0+ 3r1r22sin2A0+ 2e3sinA0 8er21sinA0 er22sinA0+ 4e2r1 r31 3r1r22,C4= a0?4r21sin2A0cosA0 6er1sinA0cosA0+2e2cosA0 3r21cosA0 r22cosA0?.(19)r1cosA+ a r1cosA0 a0= 0,(20)r1sinA b/a = 0.(21)dTddA=d2Ud2A= KPC(r1sinA b/a)2+ KPC(r1cosA+ a r1cosA0 a0)?r1cosA?r21sinAcosA+ er1sinA?ab2?a3?.If the mechanism is located at A = A2, which is the solution of Eq. (20), thenCombing Eqs. (5a), (22b) and (22c) obtainsAccording to Eqs. (21), (22a) and (22d), the following equation can be obtainedEquation (17) can lead toThus we can conclude that the mechanism is in unsta-ble equilibrium when located at A = A2 corresponding to b as shown in Figure2.When the geometry parameters are given as r1 = 10 cm, r2 = 50 cm and e = 3 cm, and the initial input position angle is set to A0 = 5, the driving torque and potential energy variations versus the input position angle is shown in Figure5. In this paper, the unit of translational spring and the torsional spring is N/cm and Ncm/(), respectively. It should be pointed out that the initial input position angle should satisfy(22a)(r3 r30)|A=A2= (r1cosA+ a r1cosA0 a0)|A=A2 0,(22b)?r21sinAcosA+ er1sinA?A=A2 0,(22c)cosA|A=A2 0.(22d)?r1cosA?r21sinAcosA+ er1sinA?ab2?a3?A=A2 0.(23a)dTddA?A=A2=d2Ud2A?A=A2 0.Page 8 of 16Liand Hao Chin. J. Mech. Eng. (2019) 32:54 so as to allow the mechanism to pass the right kinematic limb-singularity position with starting from a non-singu-lar position.Figure 5 indicates that when KRA = KRB = KRC = 0 and KPC 0, the kinematic limb-singularity position is in the unstable equilibrium point. Moreover, it can be shown that the increment of the translational spring stiffness increases both of the values of driving torque in positive direction and in negative direction. The potential energy is also increased by the increment of the translational spring stiffness.4.1.2 Nonlinear Stiffness Characteristics When KRB = KRC = 0, KPC = 0, andKRA 0Substitution of the springs stiffness into Eq. (10) obtains the driving torque asarcsiner1 r2 A0 0.(26)U =12KRA(A A0)2.(27)Td= KRB?A arcsinr1sinA er2+A0+ arcsinr1sinA0 er2?1 r1cosA?a?.(28)U =12KRB?A arcsinr1sinA er2+A0+ arcsinr1sinA0 er2?2.KKKKKKb Potential energy versus input position angleInput position angle ()Position angle / Input position angle A ()a Driving torque versus input position angleDriving torque Td (Ncm)Potential energy U (Ncm)Figure5 Bi-stable characteristic when KRA = KRB = KRC = 0 and KPC 0Page 9 of 16Liand Hao Chin. J. Mech. Eng. (2019) 32:54 4.1.4 Nonlinear Stiffness Characteristics When KRA = KRB = 0, KPC = 0, andKRC 0The driving force can be simplified asConsidering to Eq. (6), the physical meaning of Eq. (29) is that the driving torque is to resist the torque due to the torsional spring added at the pin joint C.Substitution the springs stiffness into Eq. (11) obtains the potential energy as follows(29)Td= KRC?arcsinr1sinA er2arcsinr1sinA0 er2? r1cosA?a.(30)U =12KRC?arcsinr1sinA er2arcsinr1sinA er2?2.When r1 = 10cm, r2 = 50cm, e = 3cm, and A0 = 5, Figure8 depicts the driving torque and potential energy represented by Eqs. (29) and (30), respectively.Figure 8 shows that the mechanism produces the positive-stiffness characteristic when the pin joint C is attached a torsional spring exclusively.In addition, when KRA = KRB = KRC, Figures6 through 8 indicates that the stiffness of the driving torque curve caused by KRB is the greatest, the stiffness due to KRA is the second largest and the stiffness due to KRC is the lowest.4.2 Influences ofSpring Stiffness ontheNonlinear Stiffness CharacteristicsSection4.1 illustrates that KPC makes the mechanism to generate the bi-stable characteristic including the nega-tive domain and KRA, KRB or KRC only allow the mecha-nism to exhibit the positive-stiffness characteristic. The total torque can be obtained by linear superposition of the torque due to KRA, KRB, KRC and KPC. Therefore, an expected nonlinear stiffness characteristic may be con-structed by designing different values of KRA, KRB, KRC and KPC on the condition of KPC 0.When r1 = 10cm, r2 = 50cm, e = 3cm, A0 = 5, and KPC = 1N/cm, the nonlinear stiffness characteristics of the mechanism for different values of KRA, KRB and KRC is described by Figure9, where KRA = KRB = KRA,B.Figure9 indicates that one nonlinear characteristic can transformed to another one when the torsional springs stiffness, KRA, KRB and KRC, are set to different values when the translational spring, KPC, is nonzero. For a given translational spring stiffness, when the torsional spring stiffness is small, the mechanism exhibits the bi-stable characteristic. Increment of torsional springs stiffness delays the unstable equilibrium position and advances the second stable point. The bi-stable characteristic may degenerate to the local negative-stiffness characteristic and even the positive-stiffness characteristic with large increment of torsional springs stiffness.In addition, existence of local maximum potential energy point is the precondition of the bi-stable char-acteristic. When the torque curve has local negative-stiffness domain but no maximum potential energy point, the mechanism does not exhibit the snap-through phenomenon.When r1 = 10cm, r2 = 50cm, e = 3cm, A0 = 5 and KPC = 1N/cm, Figure10 depicts the nonlinear stiffness characteristic of the mechanism when one torsional spring stiffness is zero exclusively.Figure10 shows that when KPC is given as a constant, KRB has the greatest effect, KRA has the second greatest effect, and KRC has the smallest effect on the nonlinear stiffness characteristic of the mechanism, respectively.Figure6 Stiffness characteristics for different values of KRA when KRB = KRC = 0, and KPC = 0Page 10 of 16Liand Hao Chin. J. Mech. Eng. (2019) 32:54 5 Nonlinear Stiffness Characteristic withInitial LimbSingularity PositionSection4 shows that the mechanism may generate the positive-stiffness when torsional spring stiffness is great enough. Section5 manly discusses another approach for producing the positive-stiffness characteristic by making the mechanism to move from the right kinematic limb-singularity position (Figure3(b) to the nonsingular posi-tion (Figure3(c).The torque versus position angle of the mechanism starting from the right limiting kinematic-singularity position can be derived by substitutinginto Eq. (10), and is not detailed here.Within this situation, as the translational spring placed at prismatic joint C moves in one-direction, the potential energy increases with the increment of the input rota-tion angle, and does not exist the local minimum except the initial position. Thus the bi-stable characteristic does A0= arcsiner1+ r2not exist caused by KPC. For the three torsional springs attached at the three pin joints, the potential energy only increase. Therefore, the total potential energy increases during the motion of the mechanism, and the mechanism only exhibits the positive-stiffness characteristic.When r1 = 10cm, r2 = 50cm, e = 3cm, the torque curve versus the position angle is described by Figure11.Figure 11 verifies that the torque curve exhibits the positive-stiffness characteristic caused each spring. Thus the total torque caused by all of the springs does exhibit the positive-stiffness.6 Expected Nonlinear Stiffness Characteristic CreationAccording to Sections4 and 5, the mechanism only gener-ates the positive-stiffness characteristic when the mecha-nism moves from the kinematic limb-singularity position with
收藏