研究全板簧在级进连铸模中的振荡机制外文文献翻译、中英文翻译、外文翻译
研究全板簧在级进连铸模中的振荡机制外文文献翻译、中英文翻译、外文翻译,研究,全板簧,级进连,铸模,中的,振荡,机制,外文,文献,翻译,中英文
附录一
研究全板簧在级进连铸模中的振荡机制
L.-P. Zhang*1, X.-K. Li2, Y.-F. Yao2and L.-D. Yang3
一种级联全板簧机构设计方法被提出,这是在连续铸造模具的一个新的振动导向装置。然后,本文设计的原型是在实验室中产生的,其运动学和动力学仿真分析的基础上进行了严格的–刚柔耦合的虚拟模型。对模具的位移和速度的仿真曲线与理想值基本一致,从而验证了本文建立的模型是合理的。此外,通过动力学仿真计算固有频率和振型的机制,和受力钢板弹簧和旋转接头,分析和研究了基本参数对这些力量的影响,从而建立该机制下的进一步研究和应用的基础。
关键词:连续铸造,模具,级联全板簧振动机构,设计方法,动力学分析
简介:对结晶器振动系统是现代连铸技术的关键设备,其技术性能和可靠性直接影响连铸坯的产量和质量。振动系统由振动发生装置和导向机构,后者是本文研究连铸过程中,振动导向机构在模具的运动起着指导作用。只有当模具沿着正确的轨道,该股可以保证质量。所以链需要对模具振动导向机构很高的制导精度,但对于轴承的间隙和磨损不可避免,四偏心轴和连杆振动机构广泛应用于现代铸造模具的运动将导致不受控制的偏差,严重影响了铸坯的质量。1 因此,半和全板簧机制正逐步用于坯和板坯连铸铸造模具的导向机制。2,近年来,随着半的进一步发展和全板簧振动机构,级联全板簧振动机构是国外开发的,4 具有更长的寿命,更高的侧向刚度和可靠性等。然而,直到现在,这个振荡机制报道较少。5、6 其工作原理已被提出,7 基于级联的全板簧振动机构的设计方法,本文提出了制造和试验样机。此外,刚性–刚柔耦合虚拟模型级联全板簧振动机构建立其运动学和动力学仿真分析使用多种类型的分析软件,如 ANSYS 系统模式, 与受力钢板弹簧和旋转接头的机理进行了分析,并建立这一机制的进一步研究和应用的基础。
工作原理的级联全板簧导向机制
级联的全板簧振动机构的结构如图 1 所示。它主要由级联的钢板弹簧,振动台架, 可由机械驱动(图 1A),或液压伺服(图 1b),正弦或非正弦振动发生装置。和级联的钢板弹簧是由四个钢板弹簧的分为两组。所有的钢板弹簧的延长线连接到该连铸机及其两端的圆弧中心分别连接到振动台和框架,如图 2 所示,然后两组叶片弹簧,振动台和框架形成二四连杆导向装置。结晶器振动时,柔性叶片弹簧产生弹性变形,使两个弹簧连杆导引装置交替发挥指导作用在模具不由产生装置的任何干扰。7
机械驱动;b 液压伺服系统驱动
1 级全板簧振动机构
级联全板簧振动机构的设计
从级联全板簧振动机构的工作原理,可以看出,两弹簧四连杆机构进行指导模具。如果设计不合理,这两片弹簧四连杆机构运动干涉振动过程中,将块的模具。因此,如何设计这两个弹簧机构成为关键问题。
级联全板簧振动装置的设计方法
根据级联全板簧机构由短臂连杆机构的特点,提出以下设计方法:
(i) 基于仿弧短臂连杆机构的设计原则,8 设计两刚性连杆模具的基本参数下的优化设计,从而满足指导模具模拟圆弧精度
(ii) 对两连杆刚性联系解决干扰,优化的步骤(i)均采用钢板弹簧的弹性变形,然后形成两钢板弹簧机构
(iii) 基于短臂连杆机构的基本原理,根据图 2 安排两弹簧机构。那是,结束点 A1,A2 和 C1,C2 固定在框架上;B1 和 B2 端点,D1,D2 连接模具的振动台。这样,两簧片四杆机构进行级联,因此级联全板簧机构设计
2 布局级联全板簧
计算实例
参数和刚性连杆制导精度的计算
根据几何关系和四连杆导向装置的弧形连铸机的运动关系(见图 2),在模具上任意一点的位置可以计算出结晶器振动时。
在本文中,以底点 E 在模具外弧为例,推导了轨道和 E 点的导向精度公式,如表1 所示,只有一个刚性连杆机构的导模。
为了计算方便,假定 L1,L2,L3 和 L4 分别为 A1、B1、C1 A1,B1 和 C1 的连杆长度,D1 和 C2A2,B2,A2,B2 和 C2 D2;S 是模具的振幅;DQ 是模具下的最大位移下的 B1 和 B2 D1 D2 联动摆角;R 为施法者的基本半径;R1 和 R2 分别从中心半径圆弧端点连接 A1 B1 C1,C2 A2 和 B2D1,D2;H1 和 H2 是双方对模具的水平中心线的高度;一个是夹角 OE 的弧形连铸机的横向中心线当模具处于平衡位置之间;H1,H2,R1 和 R2 分别夹角 A1 A2 B1 C1,C2,D1,D2 和之间的联系,B2 水平中心线的施法者;该公司仿弧误差的模。
数学模型与优化的联系
对结晶器振动参数和机构安装位置的初步设计指导机制。以弧形连铸机为例,外罚函数优化方法在两刚性四连杆机构优化设计中采用。四杆机构设计,是模具的轨迹误差满足精度要求的目标指导。因此,优化数学模型的目标函数可写的
根据表 1,可以看出优化设计变量
通过经验,几何尺寸和两连杆安装位置必须具备以下条件
3 实验样机
其中 D 是铸坯厚度;Ѳ和 ρ 包括联系和施法者的水平中心线之间的角度
基于目标函数(方程(1)),优化变量(方程(2))建立的方程约束(3),外罚函数优化程序采用 C 语言和汇编两连杆分别优化设计。
优化结果
在优化,假定模具对其平衡位置和高程 H1 H2 = 900 毫米对称布置;铸坯的 D =
150 mm 厚;两刚性连杆 Re = 0.02 毫米的导向精度。因此,几何参数和两刚性连杆导向精度优化设计(表 2)。通过优化的结果,是由叶片弹簧刚性连接按图 2布置取代;然后设计了一个级联的整个叶片弹簧机构。
实验样机的级联全板簧振动装置
根据优化结果,级联的实验样机制造全板簧振动机构的模具,如图所示在图 3 中,在这片弹簧连杆 A1 B1 C1 D1 由叶弹簧 1 和 4;叶春四连杆
A2 B2 C2 D2 是由叶弹簧 2 和 3。钢板弹簧连杆 A1 A2 B1 B2 C1 C2 D1 和 D2 位于铸造模具的两侧垂直方向。与原型的参数是圆形的数字表 2、制导精度的计算取整后,如表 3。
柔性多体理论
向量的位置,速度和加速度在柔性体点
基于小变形理论,对柔性体的复杂的运动可以分解为几个简单运动。因此,柔性 体上任意点的位置向量可以表示为方程(4)9。
对两刚性连杆和底点 E 对模具的误差参数的公式表 1
其中一个是方向余弦矩阵;RP 是点 P 在惯性坐标系中的向量;R0 是在惯性坐标系的坐标原点的运动矢量;SP 在移动系统的点 P 向量在柔性体变形;和是相对挠度的点 P 用模态坐标即上= WP Q 表示(如可湿性粉剂假设模态矩阵 Q 是变形的广义坐标)。
微分方程(4)的时间,计算速度和加速度矢量
柔性多体系统动力学方程
考虑到位置,对柔性体的方向和点 P 模式,广义坐标的选择,如方程(6)。
推导出是柔性体的运动方程
其中 y 是约束方程;我是拉格朗日乘数相应的约束方程;Q 是广义力投射到广义坐标 J;L 是 L =部分拉格朗日项目,和 T 和 W 分别表示动能和势能。
柔性体的动能的计算
其中 M(J)是质量矩阵和 M(j)= 下标 T,R 和 M 分别表示翻译,革命和模态的自由。
柔性体的势能包括重力势能和弹性势能,即
其中 K 是广义刚度矩阵对应的模态坐标和是一个常数。
因为柔性叶片弹簧的质量相对于振荡的机理与其他部分级联全板簧很小,可以忽略其潜在的能量。所以,代入方程(8)和(9)代入方程(7),柔性体的运动微分方程写成如下
4 仿真模型
级联全板簧振动机构的运动学仿真
基于柔性多体动力学理论的虚拟设计,并使用多种软件进行了级联的全板簧振动机构与非正弦振动模的实验样机的运动学仿真,如 ANSYS,10,11 和曲线对模具位移和速度得到与理想相比。
仿真模型
基于级联全板簧振动机构的结构特点,它假设如下:
(i) 的振动台是关于 X Y 平面对称和–Y 方向铸造方向,与坐标如图 4 所
示
(ii) 钢板弹簧的弹性变形是作为柔性体。偏心轴,连接杆,大的刚度和振
动台架为刚体。
所以建立了实验样机的仿真模型,其中钢板弹簧 1 和 4 是由两组弹簧连杆
A1 B1 C1 D1;弹簧 2 和 3 是由两组弹簧连杆 A2 B2 C2 D2 形成(图 4)。运动学仿真及结果
为了模拟实际的非正弦运动规律与级联全板簧机制指导模具,非均匀的转速在偏心轴施加的,如图 4 所示,在频率 f = 2 赫兹,振荡= 30%的偏差率和模具 h = 3 毫米振幅。
位移和振动台的速度曲线(即运动曲线的模具)如图 5 所示,其中的错误与理想曲线比较如图 6 所示。从图 5,可以看到虚拟振动台可以沿给定的非正弦规律运动。虽然在模拟模具的振荡波形与理想曲线相比有误差(图 6),其最大位移误差和速度都很小(分别为 0.0068 毫米和 0.1287 毫米 S-1),可以忽略。因此,可以得出结论,虚拟模型是合理的和可用于
5 个位移和振动台的速度曲线 B
6 个位移误差、速度误差曲线 B 振动台
7 第一、二模态振型系统 B
在级联式全板簧机理的进一步研究。振荡机构动力学仿真
基于级联全板簧振动机构的动态仿真,系统的模态和受力钢板弹簧和旋转接头进行了分析。
振荡机构模态分析
采用瞬时冻结法机制,级联的全板簧导向机制 12 进行模态分析,从系统的模态和固有频率得到。针对连铸结晶器非正弦振动频率不是很高,13 阶固有频率和振型从第一到第五是强调本文以表 4 中的情态动词相关的信息。限于篇幅,
只对第三的第一振型如图 7 所示。
从机制上的模态分析,它是已知的第一和第二自然较低的频率和共振可以在模具中连续发生 casting.14 发生共振时,模具会偏离正确的轨道,严重影响铸坯的质量。因此必须保证连铸工作频率远离第一组合全板簧振动机构的第二自然频率。
钢板弹簧的作用力分析
由于对 X–Y 平面对称,钢板弹簧在梯级全板簧振动机构双方有相同的力和变形,只在 z 轴正方向的一个分析。对于级联整个叶片弹簧机构,弹簧连杆 A1 B1 C1 C2 D1 和 D2 2 B2 交替在模具的受力和变形的钢板弹簧发挥引导作用是非常复杂的。所以很难分析叶片弹簧只有实验和计算机模拟具有重要意义。在本文中,基于虚拟样机技术,进行动力学仿真,以使模具的运动过程中,得到了钢板弹簧的曲线。此外,基本振动参数对这些力的影响进行了分析,并建立对机构的可靠性进行深入研究的基础上。
表 4 自然频率和模态形状从第一到第五级
叶片弹簧 1 弹簧 4;B C D 2;钢板弹簧;弹簧 3 8 受力钢板弹簧在不同的振幅
受力钢板弹簧在不同的振幅
理解力在不同振幅的钢板弹簧,采用不同长度的偏心轴分别为 h = 3 毫米和2 毫米 H =模具运动(即模具的振幅)为例,模拟,振动挠度比和频率的部分的运动学仿真和结果一样。作用力沿例如叶片弹簧,长度方向,本文分析了。
基于动态模拟,施加在钢板弹簧 1 端,4 和 2,3 在一段时间内得到如图 8 所示。
可以看出,受力钢板弹簧 1 端和 4 类似
在非正弦规律变化。当模具工作在前半期其平衡位置,两叶片弹簧被压缩在 负力的作用;当模具动作平衡位置的侧下的后半期,这两钢板弹簧是用正面的力量拉。此外,该价值观的力量对模具偏离其平衡位置的距离成正比。当模具移动到其最大位移,叶片弹簧将承受最大的力量。和力施加在叶片弹簧模具增加的幅 度变大。施加在弹簧 2 和 3 具有相同的规律变化,这些钢板弹簧 1 和 4 而相反的。
当模具在前半期其平衡位置,弹簧 2 和 3 承受拉力;然而,在另半周期,叶片弹簧承受压力。同样,力值的模具其平衡位置的距离成正比的力量得到更大的模具的振幅增大。
受力钢板弹簧在振动不同的偏差率
以相同的频率和振幅在节的运动学仿真和结果,基于不同的振荡A1 = 10%挠度比动态仿真,A2A3 = 30%,= 50%,得到了各片弹簧力曲线, 如图 9 所示。
从图 9,可以看出,在相同的频率和振幅的振动,叶片受力曲线挠度比弹簧振动挠度比增大变大,但振幅施加力在每个叶片弹簧保持不变。
同时还有力量应用于钢板弹簧的长度与正常方向,沿长度方向的力相同的规律变化。一般来说,钢板弹簧的作用力呈周期性的变化与系统相同的周期的结晶器振动时,它的值是以模具偏离其平衡位置的距离成正比,为模具的振幅的增大变大。挠度比
叶片弹簧 1 弹簧 2;B C D 3;钢板弹簧;弹簧 4 9 受力钢板弹簧在不同的偏差率
叶片弹簧力曲线振荡加大挠度比变大,但每一个叶片弹簧力的振幅是不变
的。
基本振动参数对联合部队的影响
基本振荡参数通常被调整以满足连铸不同的技术,这将影响运动对联合部队
和机构的动态特性。因此,联合部队对级联全板簧振动机构,这表明振幅和振动 挠度比影响的联合部队与类似法律力量应用于钢板弹簧。联合部队得到更大的提 高模具和合力曲线挠度比振幅成为随振荡挠度比较大;然而,联合部队的振幅是恒定的。
基于以上分析,级联的全叶振荡机制可以设计合理的连铸结晶器的根据实际条件,可使模具具有更好的性能和可靠性较高的生产沿着正确的轨道振动。因此, 应用的理论基础。
结论
1。首先提出了一种级联全板簧振动机构的设计方法。然后一个级联全板簧
机构的设计方法及其实验样机。
2。建立刚性–挠性联轴器足尺模型的级联全板簧振动机构的原型;此外, 其运动学和动力学仿真分析和比较理想的曲线,其结果验证了虚拟模型是合理
的。
3。在连铸系统的工作频率必须远离其第一和第二避免共振的固有频率
4。力施加在钢板弹簧和旋转接头的振幅只有通过模具的振幅决定扩大与模
具的增加幅度;当振荡增加的挠度比,力曲线的偏转变大。这样的系统现在正在规划工业用。
工具书类
1。Y. G.燕 X. J.王:误差分析和比较两种典型模具的振荡器,重金属马赫。,2006,3,46–48,54。
2。在炼钢连铸技术的 800 个问题,214–216;2004,北京,冶金工业出版
社。
3。E. S.塞凯赖什:'在连铸的结晶器振动概述,钢铁工程,1996,7,29–37。
4。F.威默:高速拉坯:理论研究和实践经验,处理。奥钢联林茨,奥地利,
1996 CCC,1996 五月,VAI,第一页。
5。群:“级联整个叶片弹簧振荡装置”,中国专利号 zl02238393 X,二月 2003。
6。R.柯¨HL,K.莫¨rwald,J 宝¨PPL 和 H.寿¨NE:“DYNAFLEX 振荡器– 技术突破在小方坯连铸”,钢铁,2001,36,25,22(8)–,29。
7。L. P.张某,李 X K,Q·邹和 Y F.姚:'系列全板簧振动机理的研究,马赫。设计研究增刊。,2008,24,81,79–。
8。Z,X 雷和 D. K.徐:“弧形连铸机的四连杆振动机构的优化设计与分析J.大学北京,钢铁,1982,3,89,80–。
9。Y 路:“柔性多体系统动力学,109–165;1996,北京,高等教育出版
社。
10。B、O、Al bedoor 和 A. almusallam:“柔性关节机械臂旋转惯性承载
有效载荷的动力学,机械。马赫。理论,2000,35,820,785–。
11。B、O、Al bedoor 和 Y 的 khulief:'一个平移和旋转的柔性连杆的有限元动力学模型,计算。方法应用。机甲。工程,1996,131,189,173–。
12。十、唐 D.金:“机械动力学,169–170;1984,北京,高等教育出版
社。
13。X K Li 和 D. M.张:在连铸的结晶器振动技术,20–25;2000,北京,冶金工业出版社。
14。R.绍:“机械系统动力学,30–34;2005,北京,机械工业出版社。
附录二
Study on cascaded whole-leaf spring oscillation mechanism for mould in continuous casting
L.-P. Zhang*1, X.-K. Li2, Y.-F. Yao2and L.-D. Yang3
A design method of a cascaded whole-leaf spring mechanism is proposed, which is a new oscillation guidance device for the mould in continuous casting. Then its prototype designed in this paper is produced in the lab, of which kinematics and dynamics simulations are carried out based on the rigid–flexible coupling virtual model. Simulation curves of the displacement and velocity of the mould are almost consistent with the ideal ones, which verifies the model built in this paper is rational. Furthermore, natural frequencies and mode shapes of the mechanism are calculated by dynamics simulation, and forces applied on leaf springs and revolute joints are analysed and effects of the basic parameters on these forces are also studied, which establish the basis for further studies and next application of this mechanism.
Keywords: Continuous casting, Mould, Cascaded whole-leaf spring oscillation mechanism, Design method, Dynamics analysis
Introduction
The oscillation system for the mould is the key equipment to the modern continuous casting technology, of which the technical performance and reliability directly affect the quality and production of continuous casting slabs. The oscillation system is composed of the oscillation generating device and guiding mechanism, and the latter is studied in this paper. During continuous casting, the oscillation guiding mechanism plays a guidance role in the motion of the mould. Only when the mould vibrates along the correct track, the quality of the strand can be ensured. So the strand requires very high guidance accuracy of the oscillation guiding mechanism for the mould. But for inevitable gap and wear of the bearings, the four-eccentric axes and four-bar linkage oscillation mechanisms widely used in modern casting will cause uncontrolled deviation in motions of the mould, which badly affects the quality of the strand.1 Therefore, the semi- and whole-leaf spring mechanisms are gradually used as guidance mechanisms for the mould in billet and slab continuous casting.2,3 In recent years, with further development of the semi- and whole-leaf spring oscillation mechanisms, the cascaded whole-leaf spring oscillation mechanism is developed abroad,4 which has a longer life, higher lateral rigidity and reliability and so on. However, until now, reports on this oscillation mechanism are few.5,6 Its working principle has been proposed by the authors,7 based on which design method of the cascaded whole-leaf spring oscillation mechanism is proposed in this paper and its
experimental prototype is manufactured. Furthermore, the rigid–flexible coupling virtual model of the cascaded whole-leaf spring oscillation mechanism is built and its kinematics and dynamics simulations are analysed using many types of software, such as ANSYS. System modes and the forces applied on leaf springs and revolute joints of the mechanism are analysed, which establish the basis for further studies and application of this mechanism.
Working principle of cascaded whole-leaf spring guidance mechanism
The structure of the cascaded whole-leaf spring oscillation mechanism is shown in Fig.
1. It mainly consists of the cascaded leaf spring, vibration table and frame, which can be driven by machinery (Fig. 1a), or hydraulics servo (Fig. 1b), generating device of sinusoidal or non-sinusoidal oscillation. And the cascaded leaf spring is composed of four steel plate springs divided into two sets. All leaf springs’ extension lines join to the circular arc centre of the continuous caster and their ends are separately connected to the vibration table and the frame, as shown in Fig. 2, and then two sets of leaf springs, the vibration table and the frame form two four bar linkage guidance devices. During the mould vibrating, flexible leaf springs produce elastic deformations, which make two leaf spring four-bar linkage guidance devices alternately play a guidance role in the mould without any interference by the generating device.7
a mechanic driven; b hydraulics servodriven
1 Cascaded whole-leaf spring oscillation mechanism
Design of cascaded whole-leaf spring oscillation mechanism
From working principle of the cascaded whole-leaf spring oscillation mechanism, it can be seen that two leaf spring four-bar linkages carry on the guidance to the mould.
If design is unreasonable, the motion of the two leaf spring four-bar linkages will interfere during vibration, which will block the mould. Therefore, how to design these two leaf spring four-bar linkages becomes the key problem.
Design method of cascaded whole-leaf spring oscillation mechanism
According to the characters of the cascaded whole-leaf spring mechanism developed from the short-arm four-bar linkage, its design method is proposed as following:
(i) based on the design principles of the short-arm four-bar linkage simulating arc,8 design two rigid four-bar linkages under the same basic parameters of the mould by optimum design, which fulfil the requirement for guiding accuracy of the mould simulating arc
(ii) for settling interference of the two four-bar linkages, rigid linkages optimised in step (i) are substituted by steel plate springs with elastic deformation and then form two leaf spring four-bar linkages
(iii) based on the basic principles of the short-arm four-bar linkage, arrange two leaf spring four-bar linkages according to Fig. 2. That is, end-points A1, C1 and A2, C2 are fixed on the frame; endpoints B1 , D1 and B2, D2 are connected to the vibration table of the mould. In this way, two leaf spring four-bar linkages are cascaded, so a cascaded whole-leaf spring mechanism is designed.
2 Layout of cascaded whole-leaf spring Calculation example
Calculations of parameters and guidance accuracy of rigid four-bar linkages
According to the geometry relations and the movement relationships of the four-bar linkage guidance devices of the arc caster (see Fig. 2), the position of any point on the mould can be calculated during the mould vibration.
In this paper, taken the bottom point E on the outer arc of the mould as an example, formulas of the track and the guiding accuracy of point E are deduced, as listed in
Table 1, with only one rigid four-bar linkage guiding for the mould.
To calculate conveniently, it is assumed that l1, l2, l3and l4 are respectively the lengths of linkages of A1 C1,A1 B1, B1 D1and C1 D1, and A2 C2, A2 B2, B2 D2and C2 D2; S is the amplitude of the mould; DQ is the swing angle of the linkage of B1 D1 and B2 D2 under the max displacement of the mould downward; R is the caster’s basic radius; R1 and R2 are radius respectively from the arc centre to two endpoints of linkages A1 C1, B1 D1, A2 C2 and B2 D2; H1and H2 are the heights of both sides to the horizontal centerline of the mould; a is the included angle between OE and the horizontal centreline of the arc caster when the mould is at equilibrium position; h1,h2, r1and r2 are respectively the included angles between linkages of A1 C1, A2 C2, B1 D1, B2 D2 and thehorizontal centreline of the caster; DREis the simulated arc error of the mould.
Mathematical model and optimisation of linkages
Oscillation parameters of the mould and the installation positions of linkages are the primary designing terms of the guidance mechanism. Taking arc caster for example, outside penalty function optimisation method is adopted in optimum design of the two rigid four-bar linkages.In four-bar linkages design, it is the goal that the trajectory error of the mould meets the requirement forguiding accuracy. So the objective function of the optimisation mathematical model can be written by
According to Table 1, it can be seen that the design optimisation variables are
By experience, geometric dimensions and installation positions of two four-bar linkages must meet thefollowing constraints
3 Experimental prototype
where D is the thickness of billet;Ѳ and ρ are included angles between linkages and horizontal centreline of the caster.
Based on the objective function (equation (1)), optimisation variables (equation (2)) and constraints established in equation (3), optimisation procedure of outside penalty function is compiled by C language and two four-bar linkages are separately optimum designed.
Optimisation results
In optimisation, it is assumed that the mould is arranged symmetrically about its equilibrium position and its height H1+H2=900 mm; the thickness of the billet D=150 mm; the guiding accuracies of two rigid four-bar linkages D RE=0.02 mm. Therefore, the geometrical parameters and the guiding accuracies of the two rigid four-bar linkages are optimum designed (Table 2). By the optimised results, rigid linkages are substituted by leaf springs arranged according to Fig. 2; then a cascaded whole-leaf spring mechanism is designed.
Experimental prototype of cascaded whole-leaf spring oscillation mechanism
Based on the optimised results, the experimental prototype of the cascaded
whole-leaf spring oscillation mechanism for the mould is manufactured, as shown in Fig. 3, in which leaf spring four-bar linkage A1 C1 B1 D1 is composed of leaf springs 1 and 4; and leaf spring four-bar linkage A2 C2 B2 D2 is made up of leaf
springs 2 and 3. Leaf spring four-bar linkages A1 C1 B1 D1 and A2 C2 B2 D2 are located at both sides of the mould in the vertical direction of casting. And parameters of the prototype are rounded numbers of Table 2 and guidance accuracy is calculated after rounding, as listed in Table 3.
Flexible multibody theory
Vectors of location, velocity and acceleration of point on flexible body
Based on the small deformation theory, complicated motion of the flexible body can be decomposed to several
Table 1 Formulas of parameters of two rigid four-bar linkages and error of bottom point E on mould
simple motions. So the location vector of any point on the flexible body can be expressed as equation (4).9
where A is the matrix of direction cosine; rP is the vector of point P in the inertial coordinate system; r0 is the vector of the origin of moving coordinate in the inertial coordinate system; sP is the vector of point P in movingcoordinate system when the flexible body is undeformed; and uP is the relative deflection of point P expressed by modal coordinates namely uP=WP q (where WP is the assumed modal matrix and q is the generalised coordinate of deformation).
Differentiating equation (4) with respect to time, vectors of velocity and acceleration are calculated
Flexible multibody dynamic equation
Considering the location, direction and mode of point P on the flexible body, the generalised coordinate is selected, as in equation (6).
The motion equation of flexible body is deduced from
where y is restraint equation; l is Lagrange multiplier corresponding to restraint equation; Q is generalised force projected to generalised coordinate j; L is Lagrange item with L=T-W, and T and W respectively denote kinetic energy and potential energy.
The kinetic energy of flexible body is calculated by
where M(j) is mass matrix and
M(j)=
subscripts t, r and m respectively denote translation, revolution and modal freedom.
The potential energy of flexible body includes the gravitational potential energy and the elastic potential energy, that is
where K is generalised stiffness matrix corresponding to modal coordinates and is a constant.
Because the mass of the flexible leaf springs is very small comparing to other parts of the oscillation mechanism with cascaded whole-leaf spring, its potential energy could be ignored. So substituting equations (8) and (9) into equation (7), differential equation of motion of the flexible body is written as follows
4 Simulating model
Kinematics simulation of cascaded whole-leaf spring oscillation mechanism
Based on the flexible multibody theory, the virtualdesign and then kinematics simulation of the experimental prototype of the cascaded whole-leaf spring oscillation mechanism for the mould with non-sinusoidal oscillation are carried out using many types of softwares, such as ANSYS,10,11 and curves of displacement and velocity of the mould are obtained and compared with the ideal ones.
Simulation model
Based on the structural characteristic of the cascaded whole-leaf spring oscillation mechanism, it is assumed as follows:
(i) the vibration table is symmetric about x–y plane and direction of –y is the casting direction, with the coordinate as shown in Fig. 4
(ii) leaf springs with elastic deformation are regarded as flexible bodies. Eccentric shaft, connecting
rod, vibration table and frame with big stiffness are taken for rigid bodies.
So the simulation model of the experimental prototype is built, in which leaf springs 1 and 4 are composed of two groups of leaf spring four-bar linkage A1 C1 B1 D1; and leaf springs 2 and 3 are formed by two groups of leaf spring four-bar
收藏