双拨叉零件的机械加工工艺规程和钻Φ20H8孔夹具设计【含7张图纸及及档全套】
喜欢就充值下载吧,,资源目录下展示的全都有,,下载后全都有,所见即所得,欢迎充值购买哦======================喜欢就充值下载吧,,资源目录下展示的全都有,,下载后全都有,所见即所得,欢迎充值购买哦======================喜欢就充值下载吧,,资源目录下展示的全都有,,下载后全都有,所见即所得,欢迎充值购买哦======================
毕业设计(论文)
JS54拨叉零件的机械加工工艺规程和Φ20H8钻底孔夹具设计
院 系 航空机械自造工程学院
专 业 航空机械自造与自动化
班 级 机制
学 号
姓 名
指导老师
二Ο一四年 12 月 31 日
摘 要
本次设计内容涉及了机械制造工艺及机床夹具设计、金属切削机床、公差配合与测量等多方面的知识。
拨叉加工工艺规程及其铣槽的夹具设计是包括零件加工的工艺设计、工序设计以及专用夹具的设计三部分。在工艺设计中要首先对零件进行分析,了解零件的工艺再设计出毛坯的结构,并选择好零件的加工基准,设计出零件的工艺路线;接着对零件各个工步的工序进行尺寸计算,关键是决定出各个工序的工艺装备及切削用量;然后进行专用夹具的设计,选择设计出夹具的各个组成部件,如定位元件、夹紧元件、引导元件、夹具体与机床的连接部件以及其它部件;计算出夹具定位时产生的定位误差,分析夹具结构的合理性与不足之处,并在以后设计中注意改进。
关键词:工艺、工序、切削用量、夹紧、定位、误差。
18
ABSTRCT
This design content has involved the machine manufacture craft and the engine bed jig design, the metal-cutting machine tool, the common difference coordination and the survey and so on the various knowledge.
The reduction gear box body components technological process and its the processing hole jig design is includes the components processing the technological design, the working procedure design as well as the unit clamp design three parts. Must first carry on the analysis in the technological design to the components, understood the components the craft redesigns the semi finished materials the structure, and chooses the good components the processing datum, designs the components the craft route; After that is carrying on the size computation to a components each labor step of working procedure, the key is decides each working procedure the craft equipment and the cutting specifications; Then carries on the unit clamp the design, the choice designs the jig each composition part, like locates the part, clamps the part, guides the part, to clamp concrete and the engine bed connection part as well as other parts; Position error which calculates the jig locates when produces, analyzes the jig structure the rationality and the deficiency, and will design in later pays attention to the improvement.
Keywords: The craft, the working procedure, the cutting specifications, clamp, the localization,
目 录
ABSTRCT III
序 言 1
第1章 零件分析 2
1.1 零件的作用 2
1.2 零件的工艺分析 2
第2章 工艺规程设计 3
2.1确定毛坯的制造形式 3
2.2基面的选择 3
2.3工艺路线的制定 4
2.4机械加工余量、工序尺寸及毛皮尺寸的确定 6
2.5确立切削用量及基本工时 6
第3章 钻Φ20H8夹具设计 8
3.1 研究原始质料 8
3.2 定位、夹紧方案的选择 9
3.3 切削力及夹紧力的计算 9
3.4 误差分析与计算 12
3.5 钻套、衬套、钻模板设计与选用 13
3.6 确定夹具体结构和总体结构 14
3.7夹具设计及操作的简要说明 15
总 结 16
参考文献 17
致 谢 18
序 言
机械制造业是制造具有一定形状位置和尺寸的零件和产品,并把它们装备成机械装备的行业。机械制造业的产品既可以直接供人们使用,也可以为其它行业的生产提供装备,社会上有着各种各样的机械或机械制造业的产品。我们的生活离不开制造业,因此制造业是国民经济发展的重要行业,是一个国家或地区发展的重要基础及有力支柱。从某中意义上讲,机械制造水平的高低是衡量一个国家国民经济综合实力和科学技术水平的重要指标。
拨叉的加工工艺规程及其铣槽的夹具设计是在学完了机械制图、机械制造技术基础、机械设计、机械工程材料等进行课程设计之后的下一个教学环节。正确地解决一个零件在加工中的定位,夹紧以及工艺路线安排,工艺尺寸确定等问题,并设计出专用夹具,保证零件的加工质量。本次设计也要培养自己的自学与创新能力。因此本次设计综合性和实践性强、涉及知识面广。所以在设计中既要注意基本概念、基本理论,又要注意生产实践的需要,只有将各种理论与生产实践相结合,才能很好的完成本次设计。
本次设计水平有限,其中难免有缺点错误,敬请老师们批评指正。
第1章 零件分析
1.1 零件的作用
拨叉作用待查
1.2 零件的工艺分析
零件为QT600-3铸钢件,无热处理要求。
从结构上看,左部呈圆筒状,右部为厚14mm的半圆叉爪。两部分上下都不在同一平面上,工件安装有一定困难。
零件的主要加工表面和主要的技术要求也分两个部分
一个是以φ20孔端面为中心的加工表面,这一组加工表面包括:φ20mm的孔以及M20螺纹底孔。
一个是以φ20孔为中心的加工表面,这一组加工表面包括:叉口端面,宽42槽,螺纹孔,销孔。
第2章 工艺规程设计
2.1确定毛坯的制造形式
零件材料是QTQ600-3。零件年产量为批量,而且零件加工的轮廓尺寸不大,在考虑提高生产率保证加工精度后可采用铸造成型中的金属模铸造。零件形状复杂,因此毛坯形状可以与零件的形状尽量接近,毛坯尺寸通过确定加工余量后再决定。
2.2基面的选择
粗基准选择应当满足以下要求:
(1)粗基准的选择应以加工表面为粗基准。目的是为了保证加工面与不加工面的相互位置关系精度。如果工件上表面上有好几个不需加工的表面,则应选择其中与加工表面的相互位置精度要求较高的表面作为粗基准。以求壁厚均匀、外形对称、少装夹等。
(2) 选择加工余量要求均匀的重要表面作为粗基准。例如:机床床身导轨面是其余量要求均匀的重要表面。因而在加工时选择导轨面作为粗基准,加工床身的底面,再以底面作为精基准加工导轨面。这样就能保证均匀地去掉较少的余量,使表层保留而细致的组织,以增加耐磨性。
(3) 应选择加工余量最小的表面作为粗基准。这样可以保证该面有足够的加工余量。
(4) 应尽可能选择平整、光洁、面积足够大的表面作为粗基准,以保证定位准确夹紧可靠。有浇口、冒口、飞边、毛刺的表面不宜选作粗基准,必要时需经初加工。
(5) 粗基准应避免重复使用,因为粗基准的表面大多数是粗糙不规则的。多次使用难以保证表面间的位置精度。
基准的选择是工艺规程设计中的重要工作之一,他对零件的生产是非常重要的。先选取φ20端面为定位基准。
精基准的选择应满足以下原则:
(1)“基准重合”原则 应尽量选择加工表面的设计基准为定位基准,避免基准不重合引起的误差。
(2)“基准统一”原则 尽可能在多数工序中采用同一组精基准定位,以保证各表面的位置精度,避免因基准变换产生的误差,简化夹具设计与制造。
(3)“自为基准”原则 某些精加工和光整加工工序要求加工余量小而均匀,应选择该加工表面本身为精基准,该表面与其他表面之间的位置精度由先行工序保证。
(4)“互为基准”原则 当两个表面相互位置精度及自身尺寸、形状精度都要求较高时,可采用“互为基准”方法,反复加工。
(5)所选的精基准 应能保证定位准确、夹紧可靠、夹具简单、操作方便。
以φ20孔(一面2销)为定位精基准,加工其它表面及孔。主要考虑精基准重合的问题,当设计基准与工序基准不重合的时候,应该进行尺寸换算,这在以后还要进行专门的计算,在此不再重复。
2.3工艺路线的制定
制定艺路线的出发点,应当是使零件的几何形状、尺寸精度及位置精度等技术要求能得到合理的保证,在生产纲领已确定的情况下,可以考虑采用万能性机床配以专用夹具,并尽量使工序集中来提高生产率。除此之外,还应当考虑经济效果,以便使生产成本尽量下降。经考虑选择了两个可行的工艺方案。
方案一
1
铸造
铸造
2
时效处理
时效处理
3
铣
铣Φ20孔两端面
4
钻
钻扩铰Φ20孔
5
钻
钻M20x1.5螺纹底孔
6
铣
铣叉口端面
7
钻
钻Φ8销孔
8
钻
钻2-M8孔
9
钻
钻4-Φ6.2孔
10
铣
铣宽42mm槽
11
攻
攻M20x1.5螺纹
12
检验
检验,入库
方案二
1
铸造
铸造
2
时效处理
时效处理
3
铣
铣Φ20孔两端面
4
铣
铣叉口端面
5
钻
钻扩铰Φ20孔
6
钻
钻M20x1.5螺纹底孔,攻丝
7
钻
钻Φ8销孔
8
钻
钻2-M8孔
9
钻
钻4-Φ6.2孔
10
铣
铣宽42mm槽
11
检验
检验,入库
上面的工序加工不太合理,因为由经验告诉我们大多数都应该先铣平面再加工孔,那样会更能容易满足零件的加工要求,效率不高,但同时钻两个孔,对设备有一定要求。
方案一和方案二的区别在于方案一先加工Φ20孔端面,再加工Φ20孔,再加工M20螺纹底孔,后面工序采用Φ20孔和M20螺纹底孔定位,采用一面两销,这样可以为后面工序利用更好的定位基准;而方案二是把端面加工完毕再加工孔,加工完M20螺纹底孔立即攻丝,不能作为定位基准。综合考虑我们选择方案一。
最终工艺路线如下:
1
铸造
铸造
2
时效处理
时效处理
3
铣
铣Φ20孔两端面
4
钻
钻扩铰Φ20孔
5
钻
钻M20x1.5螺纹底孔
6
铣
铣叉口端面
7
钻
钻Φ8销孔
8
钻
钻2-M8孔
9
钻
钻4-Φ6.2孔
10
铣
铣宽42mm槽
11
攻
攻M20x1.5螺纹
12
检验
检验,入库
2.4机械加工余量、工序尺寸及毛皮尺寸的确定
拨叉零件材料为QT600-3,毛坯重量1.12kg,生产类型为中批量,铸造毛坯。
据以上原始资料及加工路线,分别确定各家工表面的机械加工余量、工序尺寸及毛坯尺寸如下:
1、 不加工表面毛坯尺寸
不加工表面毛坯按照零件图给定尺寸为自由度公差,由铸造可直接获得。
2、 端面
由于端面要与其他接触面接触,同时又是Φ20孔的中心线的基准。查相关资料知余量留2.5比较合适。
3、孔
毛坯为空心,铸造出孔。孔的精度要求介于IT7—IT8之间,参照参数文献,确定工艺尺寸余量为2mm
2.5确立切削用量及基本工时
工序:铣Φ20孔两端面
1. 选择机床刀具
选择立式铣床X51硬质合金钢Yab端铣刀
2. 切削用量
查2表5 f=0.14~0.24mm/r
T=180min 取f=0.15mm/r v=1.84m/min
n=7.32r/min
3. 计算工时
半精铣
工序:铣宽42mm槽
1、选择机床及刀具
机床 x51立式铣床
刀具 三面刃铣刀铣槽do=42mm查[1]表8
国家标准 GB1118 D=160mm d=40mm
L=16mm 齿数z=24
2、计算切削用量
由[工艺手册]表9.4—1和(切削用量手册)查得 走刀量 f=0.67 mm/r
铣刀磨钝标准和耐用度
由[工艺手册]表9.4—6查得 磨钝标准为 0.2~0.3
表9.4—7查得 耐用度为 T=150min
(1)切削速度
由[工艺手册] 式3.2
(7-26)
查表 9.4—8 得其中:
修正系数
m=0.5
代入上式,可得 v=49.5m/min=0.82m/s
(2)确定机床主轴速度
由[工艺手册] 按机床选取主轴转速为6.33 r/s
所以 实际切削速度为
(3)计算切削工时
(7-27)
第3章 钻Φ20H8夹具设计
3.1 研究原始质料
利用本夹具主要用来加工钻Φ20H8,加工时除了要满足粗糙度要求外,还应满足两孔轴线间公差要求。为了保证技术要求,最关键是找到定位基准。同时,应考虑如何提高劳动生产率和降低劳动强度。
一、机床夹具定位元件
工件定位方式不同,夹具定位元件的结构形式也不同,这里只介绍几种常用的基本定位元件。实际生产中使用的定位元件都是这些基本定位元件的组合。
(一)工件以平面定位常用定位元件
1.支承钉
常用支承钉的结构形式如图6-1所示。平头支承钉(图a)用于支承精基准面;球头支承钉(图b)用于支承粗基准面;网纹顶面支承钉(图c)能产生较大的摩擦力,但网槽中的切屑不易清除,常用在工件以粗基准定位且要求产生较大摩擦力的侧面定位场合。一个支承钉相当于一个支承点,限制一个自由度;在一个平面内,两个支承钉限制二个自由度;不在同一直线上的三个支承钉限制三个自由度。
图6-1 常用支承钉的结构形式
2.支承板
常用的支承板结构形式如图6-2所示。平面型支承板(图a)结构简单,但沉头螺钉处清理切屑比较困难,适于作侧面和顶面定位;带斜槽型支承板(图b),在带有螺钉孔的斜槽中允许容纳少许切屑,适于作底面定位。当工件定位平面较大时,常用几块支承板组合成一个平面。一个支承板相当于两个支承点,限制两个自由度;两个(或多个)支承板组合,相当于一个平面,可以限制三个自由度。
图6-2 常用支承板的结构形式
3.可调支承
常用可调支承结构形式如图6-3所示。可调支承多用于支承工件的粗基准面,支承高度可以根据需要进行调整,调整到位后用螺母锁紧。一个可调支承限制一个自由度。
图6-3 常用可调支承的结构形式
(二) 工件以孔定位常用定位元件
1.定位销
图6-6是几种常用固定式定位销的结构形式。当工件的孔径尺寸较小时,可选用图 a 所示的结构;当孔径尺寸较大时,选用图 b 所示的结构;当工件同时以圆孔和端面组合定位时,则应选用图c所示的带有支承端面的结构。用定位销定位时,短圆柱销限制二个自由度;长圆柱销可以限制四个自由度;短圆锥销(图d)限制三个自由度。
图6-6 固定式定位销的结构形式
3.2 定位、夹紧方案的选择
由零件图可知:在对加工前,平面进行了粗、精铣加工,底面进行了钻、扩加工。因此,定位、夹紧方案有:
为了使定位误差达到要求的范围之内,采用一面一销再加上一手动调节的螺丝定位的定位方式,这种定位在结构上简单易操作。一面即底平面。
3.3 切削力及夹紧力的计算
刀具:钻头φ20。
则轴向力:见《工艺师手册》表28.4
F=Cdfk……………………………………3.1
式中: C=420, Z=1.0, y=0.8, f=0.35
k=(
F=420
转矩
T=Cdfk
式中: C=0.206, Z=2.0, y=0.8
T=0.206
功率 P=
在计算切削力时,必须考虑安全系数,安全系数
K=KKKK
式中 K—基本安全系数,1.5;
K—加工性质系数,1.1;
K—刀具钝化系数, 1.1;
K—断续切削系数, 1.1
则 F=KF=1.5
钻削时 T=17.34 N
切向方向所受力:
F=
取
F=4416
F> F
所以,时工件不会转动,故本夹具可安全工作。
根据工件受力切削力、夹紧力的作用情况,找出在加工过程中对夹紧最不利的瞬间状态,按静力平衡原理计算出理论夹紧力。最后为保证夹紧可靠,再乘以安全系数作为实际所需夹紧力的数值。即:
安全系数K可按下式计算有::
式中:为各种因素的安全系数,查参考文献[5]表可得:
所以有:
该孔的设计基准为中心轴,故以回转面做定位基准,实现“基准重合”原则; 参考文献,因夹具的夹紧力与切削力方向相反,实际所需夹紧力F夹与切削力F之间的关系F夹=KF
轴向力:F夹=KF (N)
扭距:
Nm
在计算切削力时必须把安全系数考虑在内,安全系数
由资料《机床夹具设计手册》查表可得:
切削力公式: 式(2.17)
式中
查表得:
即:
实际所需夹紧力:由参考文献[16]《机床夹具设计手册》表得:
安全系数K可按下式计算,由式(2.5)有::
式中:为各种因素的安全系数,见参考文献[16]《机床夹具设计手册》表 可得:
所以
由计算可知所需实际夹紧力不是很大,为了使其夹具结构简单、操作方便,决定选用螺旋夹紧机构。
3.4 误差分析与计算
该夹具以一底面一侧面,两支撑钉和一个调节螺丝定位,为了满足工序的加工要求,必须使工序中误差总和等于或小于该工序所规定的尺寸公差。
与机床夹具有关的加工误差,一般可用下式表示:
由参考文献[5]可得:
⑴销的定位误差 :
其中:
,
,
,
⑵ 夹紧误差 :
其中接触变形位移值:
查[5]表1~2~15有。
⑶ 磨损造成的加工误差:通常不超过
⑷ 夹具相对刀具位置误差:取
误差总和:
从以上的分析可见,所设计的夹具能满足零件的加工精度要求。
3.5 钻套、衬套、钻模板设计与选用
工艺孔的加工只需钻切削就能满足加工要求。故选用可换钻套(其结构如下图所示)以减少更换钻套的辅助时间。
图3.5 可换钻套
表
d
D
D1
H
t
基本
极限
偏差F7
基本
极限
偏差D6
>0~1
+0.016
+0.006
3
+0.010
+0.004
6
6
9
--
0.008
>1~1.8
4
+0.016
+0.008
7
>1.8~2.6
5
8
>2.6~3
6
9
8
12
16
>3~3.3
+0.022
+0.010
>3.3~4
7
+0.019
+0.010
10
>4~5
8
11
>5~6
10
13
10
16
20
>6~8
+0.028
+0.013
12
+0.023
+0.012
15
>8~10
15
18
12
20
25
>10~12
+0.034
+0.016
18
22
>12~15
22
+0.028
+0.015
26
16
28
36
>15~18
26
30
0.012
>18~22
+0.041
+0.020
30
34
20
36
HT200
>22~26
35
+0.033
+0.017
39
>26~30
42
46
25
HT200
56
>30~35
+0.050
+0.025
48
52
>35~42
55
+0.039
+0.020
59
30
56
67
>42~48
62
66
>48~50
70
74
0.040
钻模板选用钻模板,用沉头螺钉锥销定位于夹具体上。
3.6 确定夹具体结构和总体结构
对夹具体的设计的基本要求
(1)应该保持精度和稳定性
在夹具体表面重要的面,如安装接触位置,安装表面的刀块夹紧安装特定的,足够的精度,之间的位置精度稳定夹具体,夹具体应该采用铸造,时效处理,退火等处理方式。
(2)应具有足够的强度和刚度
保证在加工过程中不因夹紧力,切削力等外力变形和振动是不允许的,夹具应有足够的厚度,刚度可以适当加固。
(3)结构的方法和使用应该不错
夹较大的工件的外观,更复杂的结构,之间的相互位置精度与每个表面的要求高,所以应特别注意结构的过程中,应处理的工件,夹具,维修方便。再满足功能性要求(刚度和强度)前提下,应能减小体积减轻重量,结构应该简单。
(4)应便于铁屑去除
在加工过程中,该铁屑将继续在夹在积累,如果不及时清除,切削热的积累会破坏夹具定位精度,铁屑投掷可能绕组定位元件,也会破坏的定位精度,甚至发生事故。因此,在这个过程中的铁屑不多,可适当增加定位装置和夹紧表面之间的距离增加的铁屑空间:对切削过程中产生更多的,一般应在夹具体上面。
(5)安装应牢固、可靠
夹具安装在所有通过夹安装表面和相应的表面接触或实现的。当夹安装在重力的中心,夹具应尽可能低,支撑面积应足够大,以安装精度要高,以确保稳定和可靠的安装。夹具底部通常是中空的,识别特定的文件夹结构,然后绘制夹具布局。图中所示的夹具装配。
加工过程中,夹具必承受大的夹紧力切削力,产生冲击和振动,夹具的形状,取决于夹具布局和夹具和连接,在因此夹具必须有足够的强度和刚度。在加工过程中的切屑形成的有一部分会落在夹具,积累太多会影响工件的定位与夹紧可靠,所以夹具设计,必须考虑结构应便于铁屑。此外,夹点技术,经济的具体结构和操作、安装方便等特点,在设计中还应考虑。在加工过程中的切屑形成的有一部分会落在夹具,切割积累太多会影响工件的定位与夹紧可靠,所以夹具设计,必须考虑结构应便排出铁屑。
3.7夹具设计及操作的简要说明
为提高生产率,经过方案的认真分析和比较,选用了手动夹紧方式(螺旋机构)。这类夹紧机构结构简单、夹紧可靠、通用性大,在机床夹具中很广泛的应用。
此外,当夹具有制造误差,工作过程出现磨损,以及零件尺寸变化时,影响定位、夹紧的可靠。为防止此现象,选用可换定位销。以便随时根据情况进行调整换取。
总 结
加工工艺的编制和专用夹具的设计,使对零件的加工过程和夹具的设计有进一步的提高。在这次的设计中也遇到了不少的问题,如在编写加工工艺时,对所需加工面的先后顺序编排,对零件的加工精度和劳动生产率都有相当大的影响。在对某几个工序进行专用夹具设计时,对零件的定位面的选择,采用什么方式定位,夹紧方式及夹紧力方向的确定等等都存在问题。这些问题都直接影响到零件的加工精度和劳动生产率,为达到零件能在保证精度的前提下进行加工,而且方便快速,以提高劳动生产率,降低成本的目的。通过不懈努力和指导老师的精心指导下,针对这些问题查阅了大量的相关资料。最后,将这些问题一一解决,并夹紧都采用了手动夹紧,由于工件的尺寸不大,所需的夹紧力不大。
完成了本次设计,通过做这次的设计,使对专业知识和技能有了进一步的提高,为以后从事本专业技术的工作打下了坚实的基础。
参考文献
1.《机床夹具设计》 第2版 肖继德 陈宁平主编 机械工业出版社
2.《机械制造工艺及专用夹具设计指导》 孙丽媛主编 冶金工业出版社
3.《机械制造工艺学》 周昌治、杨忠鉴等 重庆大学出版社
4. 《机械制造工艺设计简明手册》李益民 主编 机械工业出版社
5. 《工艺师手册》 杨叔子主编 机械工业出版社
3. 《机床夹具设计手册》 王光斗、王春福主编 上海科技出版社
7. 《机床专用夹具设计图册》南京市机械研究所 主编 机械工业出版社
8. 《机械原理课程设计手册》 邹慧君主编 机械工业出版社
9.《金属切削手册》第三版 上海市金属切削技术协会 上海科学技术出版社
10.《几何量公差与检测》第五版 甘永立 主编 上海科学技术出版社
11.《机械设计基础》 第三版 陈立德主编 高等教育出版社
12.《工程材料》 丁仁亮主编 机械工业出版社
13.《机械制造工艺学课程设计指导书》, 机械工业出版社
14.《机床夹具设计》 王启平主编 哈工大出版社
15.《现代机械制图》 吕素霞 何文平主编 机械工业出版社
致 谢
经过了的很长时间,终于比较圆满完成了设计任务。回顾这日日夜夜,感觉经过了一场磨练,通过图书、网络、老师、同学等各种可以利用的方法,巩固了自己的专业知识。对所学知识的了解和使用都有了更加深刻的理解。
此时此刻,我要特别感谢我的导师的精心指导,不仅指导我们解决了关键性技术难题,更重要的是为我们指引了设计的思路并给我们讲解了设计中用到的实际工程设计经验,从而使我们设计中始终保持着清晰的思维也少走了很多弯路,也使我学会综合应用所学知识,提高分析和解决实际问题的能力。不仅如此,老师的敬业精神更是深深的感染了我,鞭策着我在以后的工作中爱岗敬业,导师是真真正正作到了传道、授业、解惑。
同时也要感谢其他同学、老师和同事的热心帮助,感谢院系领导对我们课程设计的重视和关心,为我们提供了作图工具和场所,使我们能够全身心的投入到设计中去,为更好、更快的完成课程设计提供了重要保障。
19
夹具夹紧力的优化及对工件定位精度的影响
B.Li 和 S.N.Mellkote
布什伍德拉夫机械工程学院,佐治亚理工学院,格鲁吉亚,美国研究所
由于夹紧和加工,在工件和夹具的接触部位会产生局部弹性变形,使工件尺寸发生变化,进而影响工件的最终加工质量。这种效应可通过最小化夹具设计优化,夹紧力是一个重要的设计变量,可以得到优化,以减少工件的位移。本文提出了一种确定多夹紧夹具受到准静态加工部位的最佳夹紧力的新方法。该方法采用弹性接触力学模型代表夹具与工件接触,并涉及制定和解决方案的多目标优化模型的约束。夹紧力的最优化对工件定位精度的影响通过3-2-1式铣夹具的例子进行了分析。
关键词:弹性 接触 模型 夹具 夹紧力 优化
前言
定位和夹紧的工件加工中的两个关键因素。要实现夹具的这些功能,需将工件定位到一个合适的基准上并夹紧,采用的夹紧力必须足够大,以抑制工件在加工过程中产生的移动。然而,过度的夹紧力可诱导工件产生更大的弹性变形 ,这会影响它的位置精度,并反过来影响零件质量。所以有必要确定最佳夹紧力,来减小由于弹性变形对工件的定位误差,同时满足加工的要求。在夹具分析和综合领域上的研究人员使用了有限元模型的方法或刚体模型的方法。大量的工作都以有限元方法为基础被报道[参考文献1-8]。随着得墨忒耳[8],这种方法的限制是需要较大的模型和计算成本。同时,多数的有限元基础研究人员一直重点关注的夹具布局优化和夹紧力的优化还没有得到充分讨论,也有少数的研究人员通过对刚性模型[9-11]对夹紧力进行了优化,刚型模型几乎被近似为一个规则完整的形状。得墨忒耳[12,13]用螺钉理论解决的最低夹紧力,总的问题是制定一个线性规划,其目的是尽量减少在每个定位点调整夹紧力强度的法线接触力。接触摩擦力的影响被忽视,因为它较法线接触力相对较小,由于这种方法是基于刚体假设,独特的三维夹具可以处理超过6个自由度的装夹,复和倪[14]也提出迭代搜索方法,通过假设已知摩擦力的方向来推导计算最小夹紧力,该刚体分析的主要限制因素是当出现六个以上的接触力是使其静力不确定,因此,这种方法无法确定工件移位的唯一性。
这种限制可以通过计算夹具——工件系统[15]的弹性来克服,对于一个相对严格的工件,该夹具在机械加工工件的位置会受夹具点的局部弹性变形的强烈影响。Hockenberger和得墨忒耳[16]使用经验的接触力变形的关系(称为元功能),解决由于夹紧和准静态加工力工件刚体位移。同一作者还考察了加工工件夹具位移对设计参数的影响[17]。桂 [18] 等 通过工件的夹紧力的优化定位精度弹性接触模型对报告做了改善,然而,他们没有处理计算夹具与工件的接触刚度的方法,此外,其算法的应用没有讨论机械加工刀具路径负载有限序列。李和Melkote [19]和乌尔塔多和Melkote [20]用接触力学解决由于在加载夹具夹紧点弹性变形产生的接触力和工件的位移,他们还使用此方法制定了优化方法夹具布局[21]和夹紧力[22]。但是,关于multiclamp系统及其对工件精度影响的夹紧力的优化并没有在这些文件中提到 。
本文提出了一种新的算法,确定了multiclamp夹具工件系统受到准静态加载的最佳夹紧力为基础的弹性方法。该法旨在尽量减少影响由于工件夹紧位移和加工荷载通过系统优化夹紧力的一部分定位精度。接触力学模型,用于确定接触力和位移,然后再用做夹紧力优化,这个问题被作为多目标约束优化问题提出和解决。通过两个例子分析工件夹紧力的优化对定位精度的影响,例子涉及的铣削夹具3-2-1布局。
1. 夹具——工件联系模型
1.1 模型假设
该加工夹具由L定位器和带有球形端的c形夹组成。工件和夹具接触的地方是线性的弹性接触,其他地方完全刚性。工件——夹具系统由于夹紧和加工受到准静态负载。夹紧力可假定为在加工过程中保持不变,这个假设是有效的,在对液压或气动夹具使用。在实际中,夹具工件接触区域是弹性分布,然而,这种模式的发展,假设总触刚度(见图1)第i夹具接触力局部变形如下:
(1) 其中(j=x,y,z)表示,在当地子坐标系切线和法线方向的接触刚度
第 19 页 共 15 页
图1 弹簧夹具——
工件接触模型。
表示在第i个
接触处的坐标系
(j=x,y,z)是对应沿着xyz方向的弹性变形,分别 (j= x,y,z)的代表和切向力接触 ,法线力接触。
1.2 工件——夹具的接触刚度模型
集中遵守一个球形尖端定位,夹具和工件的接触并不是线性的,因为接触半径与随法线力呈非线性变化 [23]。由于法线力接触变形作用于半径和平面工件表面之间,这可从封闭赫兹的办法解决缩进一个球体弹性半空间的问题。对于这个问题, 是法线的变形,在[文献23 第93页]中给出如下:
(2)
其中式中 和是工件和夹具的弹性模量,、分别是工件和材料的泊松比。
切向变形沿着和切线方向)硅业切力距有以下形式[文献23第217页]
(3)
其中、 分别是工件和夹具剪切模量
一个合理的接触刚度的线性可以近似从最小二乘获得适合式 (2),这就产生了以下线性化接触刚度值:在计算上述的线性近似,
(4)
(5)
正常的力被假定为从0到1000N,且最小二乘拟合相应的R2值认定是0.94。
2.夹紧力优化
我们的目标是确定最优夹紧力,将尽量减少由于工件刚体运动过程中,局部的夹紧和加工负荷引起的弹性变形,同时保持在准静态加工过程中夹具——工件系统平衡,工件的位移减少,从而减少定位误差。实现这个目标是通过制定一个多目标约束优化问题的问题,如下描述。
2.1 目标函数配方
工件旋转,由于部队轮换往往是相当小[17]的工件定位误差假设为确定其刚体翻译基本上,其中 、、和 是 沿,和三个正交组件(见图2)。
图2 工件刚体平移和旋转
工件的定位误差归于装夹力,然后可以在该刚体位移的范数计算如下:
(6)
其中表示一个向量二级标准。
但是作用在工件的夹紧力会影响定位误差。当多个夹紧力作用于工件,由此产生的夹紧力为,有如下形式:
(7)
其中夹紧力是矢量,夹紧力的方向矩阵,是夹紧力是矢量的方向余弦,、和 是第i个夹紧点夹紧力在、和方向上的向量角度(i=1、2、3...,C)。
在这个文件中,由于接触区变形造成的工件的定位误差,被假定为受的作用力是法线的,接触的摩擦力相对较小,并在进行分析时忽略了加紧力对工件的定位误差的影响。意指正常接触刚度比,是通过(i=1,2…L)和最小的所有定位器正常刚度相乘,并假设工件、、取决于、、的方向,各自的等效接触刚度可有下式计算得出(见图3),工件刚体运动,归于夹紧行动现在可以写成:
(8)
工件有位移,因此,定位误差的减小可以通过尽量减少产生的夹紧力向量 范数。因此,第一个目标函数可以写为:
最小化 (9)
要注意,加权因素是与等效接触刚度成正比的在、和 方向上。通过使用最低总能量互补参考文献[15,23]的原则求解弹性力学接触问题得出A的组成部分是唯一确定的,这保证了夹紧力和相应的定位反应是“真正的”解决方案,对接触问题和产生的“真正”刚体位移,而且工件保持在静态平衡,通过夹紧力的随时调整。因此,总能量最小化的形式为补充的夹紧力优化的第二个目标函数,并给出:
最小化 (10)
其中代表机构的弹性变形应变能互补,代表由外部力量和力矩配合完成,是遵守对角矩阵的, 和是所有接触力的载体。
如图3 加权系数计算确定的基础
内蒙古科技大学本科生毕业设计(外文翻译)
2.2 摩擦和静态平衡约束
在(10)式优化的目标受到一定的限制和约束,他们中最重要的是在每个接触处的静摩擦力约束。库仑摩擦力的法律规定(是静态摩擦系数),这方面的一个非线性约束和线性化版本可以使用,并且[19]有:
(11)
假设准静态载荷,工件的静力平衡由下列力和力矩平衡方程确保(向量形式):
(12)
其中包括在法线和切线方向的力和力矩的机械加工力和工件重量。
2.3界接触力
由于夹具——工件接触是单侧面的,法线的接触力只能被压缩。这通过以下的的约束表(i=1,2…,L+C) (13)
它假设在工件上的法线力是确定的,此外,在一个法线的接触压力不能超过压工件材料的屈服强度()。这个约束可写为:
(i=1,2,…,L+C) (14)
如果是在第i个工件——夹具的接触处的接触面积,完整的夹紧力优化模型,可以写成:最小化 (15)
3.模型算法求解
式(15)多目标优化问题可以通过求解约束[24]。这种方法将确定的目标作为首要职能之一,并将其转换成一个约束对。该补充()的主要目的是处理功能,并由此得到夹紧力()作为约束的加权范数最小化。对为主要目标的选择,确保选中一套独特可行的夹紧力,因此,工件——夹具系统驱动到一个稳定的状态(即最低能量状态),此状态也表示有最小的夹紧力下的加权范数。 的约束转换涉及到一个指定的加权范数小于或等于,其中是 的约束,假设最初所有夹紧力不明确,要确定一个合适的。在定位和夹紧点的接触力的计算只考虑第一个目标函数(即)。虽然有这样的接触力,并不一定产生最低的夹紧力,这是一个“真正的”可行的解决弹性力学问题办法,可完全抑制工件在夹具中的位置。这些夹紧力的加权系数,通过计算并作为初始值与比较,因此,夹紧力式(15)的优化问题可改写为:
最小化 (16)
由: (11)–(14) 得。
类似的算法寻找一个方程根的二分法来确定最低的上的约束, 通过尽可能降低上限,由此产生的最小夹紧力的加权范数。 迭代次数K,终止搜索取决于所需的预测精度和,有参考文献[15]:
(17)
其中表示上限的功能,完整的算法在如图4中给出。
图4 夹紧力的优化算法(在示例1中使用)。 图5 该算法在示例2使用
4. 加工过程中的夹紧力的优化及测定
上一节介绍的算法可用于确定单负载作用于工件的载体的最佳夹紧力,然而,刀具路径随磨削量和切割点的不断变化而变化。因此,相应的夹紧力和最佳的加工负荷获得将由图4算法获得,这大大增加了计算负担,并要求为选择的夹紧力提供标准, 将获得满意和适宜的整个刀具轨迹 ,用保守的办法来解决下面将被讨论的问题,考虑一个有限的数目(例如m)沿相应的刀具路径设置的产生m个最佳夹紧力,选择记为, , …,在每个采样点,考虑以下四个最坏加工负荷向量:
(18)、和表示在、和方向上的最大值,、和上的数字1,2,3分别代替对应的和另外两个正交切削分力,而且有:
虽然4个最坏情况加工负荷向量不会在工件加工的同一时刻出现,但在每次常规的进给速度中,刀具旋转一次出现一次,负载向量引入的误差可忽略。因此,在这项工作中,四个载体负载适用于同一位置,(但不是同时)对工件进行的采样 ,夹紧力的优化算法图4,对应于每个采样点计算最佳的夹紧力。夹紧力的最佳形式有:
(i=1,2,…,m) (j=x,y z,r) (19)
其中是最佳夹紧力的四个情况下的加工负荷载体,(C=1,2,…C)是每个相应的夹具在第i个样本点和第j负荷情况下力的大小。是计算每个负载点之后的结果,一套简单的“最佳”夹紧力必须从所有的样本点和装载条件里发现,并在所有的最佳夹紧力中选择。这是通过在所有负载情况和采样点排序,并选择夹紧点的最高值的最佳的夹紧力,见于式 (20):
(k=1,2,…,C) (20)
只要这些具备,就得到一套优化的夹紧力,验证这些力,以确保工件夹具系统的静态平衡。否则,会出现更多采样点和重复上述程序。在这种方式中,可为整个刀具路径确定“最佳”夹紧力 ,图5总结了刚才所描述的算法。请注意,虽然这种方法是保守的,它提供了一个确定的夹紧力,最大限度地减少工件的定位误差的一套系统方法。
5.影响工件的定位精度
它的兴趣在于最早提出了评价夹紧力的算法对工件的定位精度的影响。工件首先放在与夹具接触的基板上,然后夹紧力使工件接触到夹具,因此,局部变形发生在每个工件夹具接触处,使工件在夹具上移位和旋转。随后,准静态加工负荷应用造成工件在夹具的移位。工件刚体运动的定义是由它在、和方向上的移位和自转(见图2),
如前所述,工件刚体位移产生于在每个夹紧处的局部变形,假设为相对于工件的质量中心的第i个位置矢量定位点,坐标变换定理可以用来表达在工件的位移,以及工件自转如下: (21)
其中表示旋转矩阵,描述当地在第i帧相联系的全球坐标系和是一个旋转矩阵确定工件相对于全球的坐标系的定位坐标系。假设夹具夹紧工件旋转,由于旋转很小,故也可近似为:
(22)
方程(21)现在可以改写为: (23)
其中是经方程(21)重新编排后变换得到的矩阵式,是夹紧和加工导致的工件刚体运动矢量。工件与夹具单方面接触性质意味着工件与夹具接触处没有拉力的可能。因此,在第i装夹点接触力可能与的关系如下:
(24)
其中是在第i个接触点由于夹紧和加工负荷造成的变形,意味着净压缩变形,而负数则代表拉伸变形; 是表示在本地坐标系第i个接触刚度矩阵,是单位向量. 在这项研究中假定液压/气动夹具,根据对外加工负荷,故在法线方向的夹紧力的强度保持不变,因此,必须对方程(24)的夹紧点进行修改为:
(25)
其中是在第i个夹紧点的夹紧力,让表示一个对外加工力量和载体的6×1矢量。并结合方程(23)—(25)与静态平衡方程,得到下面的方程组:
(26)
其中,其中表示相乘。由于夹紧和加工工件刚体移动,q可通过求解式(26)得到。工件的定位误差向量, (见图6),
现在可以计算如下: (27)
其中是考虑工件中心加工点的位置向量,且
6.模拟工作
较早前提出的算法是用来确定最佳夹紧力及其对两例工件精度的影响例如:
1.适用于工件单点力。
2.应用于工件负载准静态铣削序列
如左图7 工件夹具配置中使用的模拟研究 工件夹具定位联系; 、和全球坐标系。
3-2-1夹具图7所示,是用来定位并控制7075 - T6铝合金(127毫米×127毫米×38.1毫米)的柱状块。假定为球形布局倾斜硬钢定位器/夹具在表1中给出。工件——夹具材料的摩擦静电对系数为0.25。使用伊利诺伊大学开发EMSIM程序[参考文献26] 对加工瞬时铣削力条件进行了计算,如表2给出例(1),应用工件在点(109.2毫米,25.4毫米,34.3毫米)瞬时加工力,图4中表3和表4列出了初级夹紧力和最佳夹紧力的算法 。该算法如图5所示 ,一个25.4毫米铣槽使用EMSIM进行了数值模拟,以减少起步(0.0毫米,25.4毫米,34.3毫米)和结束时(127.0毫米,25.4毫米,34.3毫米)四种情况下加工负荷载体,
(见图8)。模拟计算铣削力数据在表5中给出。
图8最终铣削过程模拟例如2。
表6中5个坐标列出了为模拟抽样调查点。最佳夹紧力是用前面讨论过的排序算法计算每个采样点和负载载体最后的夹紧力和负载。
7.结果与讨论
例如算法1的绘制最佳夹紧力收敛图9,
图9
对于固定夹紧装置在图示例假设(见图7),由此得到的夹紧力加权范数有如下形式:.结果表明,最佳夹紧力所述加工条件下有比初步夹紧力强度低得多的加权范数,最初的夹紧力是通过减少工件的夹具系统补充能量算法获得。由于夹紧力和负载造成的工件的定位误差,如表7。结果表明工件旋转小,加工点减少错误从13.1%到14.6%不等。在这种情况下,所有加工条件改善不是很大,因为从最初通过互补势能确定的最小化的夹紧力值已接近最佳夹紧力。图5算法是用第二例在一个序列应用于铣削负载到工件,他应用于工件铣削负载一个序列。最佳的夹紧力,,对应列表6每个样本点,随着最后的最佳夹紧力,在每个采样点的加权范数和最优的初始夹紧力绘图10,在每个采样点的加权范数的,,和绘制。
结果表明,由于每个组成部分是各相应的最大夹紧力,它具有最高的加权范数。如图10所示,如果在每个夹紧点最大组成部分是用于确定初步夹紧力,则夹紧力需相应设置,有比相当大的加权范数。故是一个完整的刀具路径改进方案。上述模拟结果表明,该方法可用于优化夹紧力相对于初始夹紧力的强度,这种做法将减少所造成的夹紧力的加权范数,因此将提高工件的定位精度。
图10
8.结论
该文件提出了关于确定多钳夹具,工件受准静态加载系统的优化加工夹紧力的新方法。夹紧力的优化算法是基于接触力学的夹具与工件系统模型,并寻求尽量减少应用到所造成的工件夹紧力的加权范数,得出工件的定位误差。该整体模型,制定一个双目标约束优化问题,使用-约束的方法解决。该算法通过两个模拟表明,涉及3-2-1型,二夹铣夹具的例子。今后的工作将解决在动态负载存在夹具与工件在系统的优化,其中惯性,刚度和阻尼效应在确定工件夹具系统的响应特性具有重要作用。
9.参考资料:
1、J. D. Lee 和L. S. Haynes .《柔性夹具系统的有限元分析》交易美国ASME,工程杂志工业 :134-139页。
2、W. Cai, S. J. Hu 和J. X. Yuan .“柔性钣金夹具:原理,算法和模拟”,交易美国ASME,制造科学与工程杂志 :1996 318-324页。
3、P. Chandra, S. M. Athavale, R. E. DeVor 和S. G. Kapoor.“负载对表面平整度的影响”工件夹具制造科学研讨会论文集1996,第一卷:146-152页。
4、R. J. Menassa 和V. R. DeVries.“适用于选拔夹具设计与优化方法,美国ASME工业工程杂志:113 、 412-414,1991。
5、A. J. C. Trappey, C. Su 和J. Hou.《计算机辅助夹具分析中的应用有限元分析和数学优化模型》, 1995 ASME程序,MED: 777-787页。
6、 S. N. Melkote, S. M. Athavale, R. E. DeVor, S. G. Kapoor 和J. Burkey .“基于加工过程仿真的加工装置作用力系统研究”, NAMRI/SME:207–214页, 1995
7、“考虑工件夹具,夹具接触相互作用布局优化模拟的结果” 341-346,1998。
8、E. C. DeMeter. 《快速支持布局优化》,国际机床制造, 硕士论文 1998。
9、Y.-C. Chou, V. Chandru, M. M. Barash .《加工夹具机械构造的数学算法:分析和合成》,美国ASME,工程学报工业“:1989 299-306页。
10、S. H. Lee 和 M. R. Cutkosky. 《具有摩擦性的夹具规划》 美国ASME,工业工程学报:1991,320–327页。
11、S. Jeng, L. Chen 和W. Chieng.“最小夹紧力分析”,国际机床制造,硕士论文 1995年。
12、E. C. DeMeter.《加工夹具的性能的最小——最大负荷标准》 美国ASME,工业工程杂志 :1994
13、E. C. DeMeter .《加工夹具最大负荷的性能优化模型》 美国ASME,工业工程杂志 1995。
14、JH复和AYC倪.“核查和工件夹持的夹具设计”方案优化,设计和制造,4,硕士论文: 307-318,1994。
15、T. H. Richards、埃利斯 霍伍德.1977,《应力能量方法分析》,1977。
16、M. J. Hockenberger and E. C. DeMeter. 对工件准静态分析功能位移在加工夹具的应用程序,制造科学杂志与工程: 325–331页, 1996。
收藏