关于矩阵逆的判定及求逆矩阵方法的探讨数学毕业论文

上传人:痛*** 文档编号:40706680 上传时间:2021-11-17 格式:DOC 页数:7 大小:265.52KB
收藏 版权申诉 举报 下载
关于矩阵逆的判定及求逆矩阵方法的探讨数学毕业论文_第1页
第1页 / 共7页
关于矩阵逆的判定及求逆矩阵方法的探讨数学毕业论文_第2页
第2页 / 共7页
关于矩阵逆的判定及求逆矩阵方法的探讨数学毕业论文_第3页
第3页 / 共7页
资源描述:

《关于矩阵逆的判定及求逆矩阵方法的探讨数学毕业论文》由会员分享,可在线阅读,更多相关《关于矩阵逆的判定及求逆矩阵方法的探讨数学毕业论文(7页珍藏版)》请在装配图网上搜索。

1、 关于矩阵逆的判定及求逆矩阵方法的探讨 摘 要:矩阵的可逆性判定及逆矩阵的求解是高等代数的主要内容之一。本文给出 判定矩阵是否可逆及求逆矩阵的几种方法。 关键词:逆矩阵 伴随矩阵 初等矩阵 分块矩阵 矩阵理论是线性代数的一个主要内容,也是处理实际问题的重要工具,而逆矩阵在矩阵的理论和应用中占有相当重要的地位。下面通过引入逆矩阵的定义,就矩阵可逆性判定及求逆矩阵的方法进行探讨。 定义1 n级方阵A称为可逆的,如果n级方阵B,使得 AB=BA=E (1)

2、 这里E是n级单位矩阵。 定义2 如果B适合(1),那么B就称为A的逆矩阵,记作。 定理1 如果A有逆矩阵,则逆矩阵是唯一的。 逆矩阵的基本性质: 性质1 当A为可逆阵,则. 性质2 若A为可逆阵,则为任意一个非零的数都是可逆阵,且 . 性质3 ,其中A,B均为n阶可逆阵. 性质4 . 由性质3有 定理2 若是同阶可逆阵,则是可逆阵,且 下面给出几种判定方阵的可逆性及求逆矩阵的方法: 方法一 定义法 利用定义1,即找一个矩阵B,使AB=E,则A可逆,并且。 方法二 伴随矩阵法 定义3 设是n级方阵,用表

3、示A的元的代数余子式, 矩阵称为A的伴随矩阵,记作A*。 定理3 矩阵A可逆的充分必要条件是,并且当A可逆时,有 。 定理证明见[1]. 定理3不仅给出了判断一个矩阵是否可逆的一种方法,并且给出了求逆矩阵的一种方法,但是这种方法主要用在理论上以及2级或3级矩阵的情形,如果阶数较大,那么使用此方法计算量太大。 由定理3逆矩阵判定的方法还有: 推论3.1 n级矩阵A可逆的充要条件是矩阵A的秩为n。 推论3.2 矩阵A可逆的充要条件是它的特征值都不为0。 推论3.3 n级矩阵A可逆的充分必要条件是它的行或列向量组线性无关。 方法三 初等变换法 定义4

4、对矩阵施行以下三种变换称为矩阵的初等变换: 交换矩阵的两行列; 以一个非零的数乘矩阵的某一行列; 把矩阵的某一行(列的倍加到另一行列。 定理4 方阵A可逆的充分必要条件是A可表示为若干个同阶初等矩阵的乘积。 具体方法是:欲求A的逆矩阵时,首先由A作出一个矩阵,即,其次对这个矩阵施以行初等变换且只能用行初等变换,将它的左半部的矩阵A化为单位矩阵,那么原来右半部的单位矩阵就同时化为: 或者 例1 求矩阵A的逆矩阵,已知。 解: 注:在事先不知道n阶矩阵是可逆

5、的情况下,也可直接用此方法。如果在初等变换过程中发现左边的矩阵有一行元素全为0,则意味着A不可逆。 方法四 利用解线性方程组来求逆矩阵 若阶矩阵A可逆,则,于是的第列是线性方程组的 解,.因此我们可以去解线性方程组,其,把所得的解的公式中的分别用;;…;代替,便可求得的第列,这种方法在某些时候可能比用初等变换法求逆矩阵稍微简单一点。 例2 求矩阵A=的逆矩阵。 解: 设 解方程组AX=B 即 解得 然后把列,分别用 代入得到矩阵的第行,分别用 即 这种方法特别适用于线性方程组

6、AX=B的解容易求解的情形。 方法五 分块求逆法 当一个可逆矩阵的阶数较大时,即使用初等变换求它的逆矩阵仍然计算量较大。如果把该矩阵分块,再对分块矩阵求逆矩阵,则能减少计算量。而且形如 的分块矩阵,使用分块矩阵较方便。现用为例,来说明求逆矩阵的方法,其它的矩阵可依此类推。 设有n阶可逆矩阵,其中为阶可逆方阵,求。 解:设,则与有相同分法,则 得一个线性方程组为 由于可逆,故存在,解得 从而 方法六 利用哈密尔顿—凯莱定理求逆矩阵法 哈密尔顿—凯莱定理

7、设A是数域P上一个矩阵,是A的特征多项式,则。 如果A可逆,则A的特征多项式的常数项,由定理知 于是 因此得 此式给出了的多项式计算方法。 例3 已知,求。 解:矩阵A的特征多项式为: 因,所以矩阵A可逆,由式知 = 方法七 “和化积”法 有时遇到这样的问题:要求判断方阵之和A+B的可逆性并求逆矩阵,此时可将A+B直接化为,由此有A+B可逆,且,或将方阵之和A+B表为若干个已知的可逆阵之积,再有定理2知A+B可逆,并可得出其逆矩阵。 例4 证明:若,则是可逆阵,并求。 证明: E-A

8、是可逆矩阵且 总之,矩阵可逆性的判断及求逆矩阵的方法很多,不仅仅只是以上列举的几种方法,大家在做题过程中,可根据题目的需要灵活选用方法来求解。 参考文献: [1]丘维声. 高等代数[M]. 高等教育出版社,1985. [2]北京大学数学系. 高等代数[M]. 高等教育出版社,1988. [3]杨明顺. 三角矩阵求逆的一种方法. 渭南师范学院学报,2003. [4]杨彗. 矩阵的非奇异性判定及求逆矩阵的几种方法. 云南师范大学学报,2002. The ones that go against matrix judge and ask the discussion g

9、oing against the matrix method ABSTRACT: Judging reversibly and against the asking and solving one of the main contents that is higher algebra of matrix. This text provides and judges whether matrix is reversible and asks several kinds of methods to go against matrix. KEYWORDS: Inverse matrix Adjoint matrix Elementary matrix Partitioned matrix 7

展开阅读全文
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

相关资源

更多
正为您匹配相似的精品文档
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!