熵值法简要介绍
《熵值法简要介绍》由会员分享,可在线阅读,更多相关《熵值法简要介绍(2页珍藏版)》请在装配图网上搜索。
1、熵值法 在信息论中熵是对系统的一种不确定性度量,若某一个指标的信息量越大, 信息越明确,则表明该指标的不确定性就越小,变异程度就越小,熵就越小;反 之信息量越的指标小,其指标变异度就越大,熵就越大。 熵值法求解权重的一般步骤如下: 设有m个备选方案, n项评价指标,原始指标数据矩阵为X 为 。 m n x〔1 x〔2 L x?1 x?2 L X M M O X2m M Xn1 Xn2 L xnm 其中,xij为第 i个评价指标下的 第j个评价对象的数值 1,2丄 n;j 1,2丄 m (1)对原始指标数据矩阵进行标准化处理
2、将最优指标标准化后为1,最劣指标标准化后为0, rij为标准化后的指标。 对于成本型指标: max Xi Xi rij 1 (1-5) maxxj mi nxj i i 对于效益型指标: Xj min Xij rij 1 (1-4) mpxXj m.i nxj 依据熵权法的理论,可计算得出第 i个评价指标下第j个评价对象占该指标 的比重 Pij =( i 1,2, , n; j 1,2, , m) rij Pij m rij j 1 (1-5) (2)计算信息熵 第j项指标的熵值H j的计算公式如下: Hj j In m j Pij " Pij 1 (1-6) 式中,若 pij 0,则 Pij In pij 0。 (3)计算权系数 第j项指标的权系数j的计算公式如下: (1-7) 1 Hj j ""m 1 Hj j i
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。