冲床上下料机械手设计【液压驱动 三自由度圆柱坐标式】
喜欢这套资料就充值下载吧。资源目录里展示的都可在线预览哦。下载后都有,请放心下载,文件全都包含在内,图纸为CAD格式可编辑,有疑问咨询QQ:414951605 或 1304139763p
绪 论
1. 机械手概述
工业机器人由操作机(机械本体)、控制器、伺服驱动系统和检测传感装置构成,是一种仿人操作,自动控制、可重复编程、能在三维空间完成各种作业的机电一体化自动化生产设备。特别适合于多品种、变批量的柔性生产。它对稳定、提高产品质量,提高生产效率,改善劳动条件和产品的快速更新换代起着十分重要的作用。
机器人技术是综合了计算机、控制论、机构学、信息和传感技术、人工智能、仿生学等多学科而形成的高新技术,是当代研究十分活跃,应用日益广泛的领域。机器人应用情况,是一个国家工业自动化水平的重要标志。
机器人并不是在简单意义上代替人工的劳动,而是综合了人的特长和机器特长的一种拟人的电子机械装置,既有人对环境状态的快速反应和分析判断能力,又有机器可长时间持续工作、精确度高、抗恶劣环境的能力,从某种意义上说它也是机器的进化过程产物,它是工业以及非产业界的重要生产和服务性设各,也是先进制造技术领域不可缺少的自动化设备。
机械手是模仿着人手的部分动作,按给定程序、轨迹和要求实现自动抓取、搬运或操作的自动机械装置。在工业生产中应用的机械手被称为“工业机械手”。生产中应用机械手可以提高生产的自动化水平和劳动生产率:可以减轻劳动强度、保证产品质量、实现安全生产;尤其在高温、高压、低温、低压、粉尘、易爆、有毒气体和放射性等恶劣的环境中,它代替人进行正常的工作,意义更为重大。因此,在机械加工、冲压、铸、锻、焊接、热处理、电镀、喷漆、装配以及轻工业、交通运输业等方面得到越来越广泛的引用[1]。
机械手的结构形式开始比较简单,专用性较强,仅为某台机床的上下料装置,是附属于该机床的专用机械手。随着工业技术的发展,制成了能够独立的按程序控制实现重复操作,适用范围比较广的“程序控制通用机械手”,简称通用机械手。由于通用机械手能很快的改变工作程序,适应性较强,所以它在不断变换生产品种的中小批量生产中获得广泛的引用[2]。
1.1 机械手的组成
机械手主要由执行机构、驱动系统、控制系统以及位置检测装置等所组成。各系统相互之间的关系如方框图1.1所示。
控制系统
驱动系统
被抓取工件
执行机构
位置检测装置
图1.1机械手的组成方框图
(一)执行机构
包括手部、手腕、手臂和立柱等部件。
1、手部
即与物件接触的部件。由于与物件接触的形式不同,可分为夹持式和吸附式手部。夹持式手部由手指(或手爪) 和传力机构所构成。手指是与物件直接接触的构件,常用的手指运动形式有回转型和平移型。回转型手指结构简单,制造容易构件,故应用较广泛平移型应用较少,其原因是结构比较复杂,但平移型手指夹持圆形零件时,工件直径变化不影响其轴心的位置,因此适宜夹持直径变化范围大的工件。
手指结构取决于被抓取物件的表面形状、被抓部位(是外廓或是内孔)和物件的重量及尺寸。常用的指形有平面的、V形面的和曲面的:手指有外夹式和内撑式;指数有双指式、多指式和双手双指式等。
而传力机构则通过手指产生夹紧力来完成夹放物件的任务。传力机构型式较常用的有:滑槽杠杆式、连杆杠杆式、斜面杠杆式、齿轮齿条式、丝杠螺母多,式弹簧式和重力式等。
附式手部主要由吸盘等构成,它是靠吸附力(如吸盘内形成负压或产生电吸磁力)吸附物件,相应的吸附式手部有负压吸盘和电磁盘两类。
对于轻小片状零件、光滑薄板材料等,通常用负压吸盘吸料。造成负压的方式有气流负压式和真空泵式。
对于导磁性的环类和带孔的盘类零件,以及有网孔状的板料等,通常用电磁吸盘吸料。电磁吸盘的吸力由直流电磁铁和交流电磁铁产生。
用负压吸盘和电磁吸盘吸料,其吸盘的形状、数量、吸附力大小,根据被吸附的物件形状、尺寸和重量大小而定。
此外,根据特殊需要,手部还有勺式(如浇铸机械手的浇包部分)、托式(如冷齿轮机床上下料机械手的手部)等型式。
2、手腕
是连接手部和手臂的部件,并可用来调整被抓取物件的方位(即姿势)。
3、手臂
手臂是支承被抓物件、手部、手腕的重要部件。手臂的作用是带动手指去抓取物件,并按预定要求将其搬运到指定的位置。工业机械手的手臂通常由驱动手臂运动的部件(如油缸、气缸、齿轮齿条机构、连杆机构、螺旋机构和凸轮机构等)与驱动源(如液压、气压或电机等)相配合,以实现手臂的各种运动。
手臂可能实现的运动如下:
手臂运动
基本运动
复合运动
直线运动与回转运动的组合(即螺旋运动)
两直线运动的组合(即平面运动)
回转运动:如水平回转、左右摆动运动
直线运动:如伸缩、升降、横移运动
两回转运动的组合(即空间曲面运动)。
手臂在进行伸缩或升降运动时,为了防止绕其轴线的转动,都需要有导向装置,以保证手指按正确方向运动。此外,导向装置还能承担手臂所受的弯曲力矩和扭转力矩以及手臂回转运动时在启动、制动瞬间产生的惯性力矩,使运动部件受力状态简单。
导向装置结构形式,常用的有:单圆柱、双圆柱、四圆柱和V形槽、燕尾槽等导向型式。
4、立柱
立柱是支承手臂的部件,立柱也可以是手臂的一部分,手臂的回转运动和升降(或俯仰)运动均与立柱有密切的联系。机械手的立往通常为固定不动的,但因工作需要,有时也可作横向移动,即称为可移式立柱。
5、行走机构
当工业机械手需要完成较远距离的操作,或扩大使用范围时,可在机座上安装滚轮、轨道等行走机构,以实现工业机械手的整机运动。滚轮式行走机构可分为有轨的和无轨的两种。驱动滚轮运动则应另外增设机械传动装置。
6、机座
机座是机械手的基础部分,机械手执行机构的各部件和驱动系统均安装于机座上,故起支撑和连接的作用。
(二)驱动系统
驱动系统是驱动工业机械手执行机构运动的动力装置,通常由动力源、控制调节装置和辅助装置组成。常用的驱动系统有液压传动、气压传动、电力传动和机械传动等四中形式。
(三)控制系统
控制系统是支配着工业机械手按规定的要求运动的系统。目前工业机械手的控制系统一般由程序控制系统和电气定位(或机械挡块定位)系统组成。控制系统有电气控制和射流控制两种,它支配着机械手按规定的程序运动,并记忆人们给予机械手的指令信息(如动作顺序、运动轨迹、运动速度及时间),同时按其控制系统的信息对执行机构发出指令,必要时可对机械手的动作进行监视,当动作有错误或发生故障时即发出报警信号。
(四)位置检测装置
控制机械手执行机构的运动位置,并随时将执行机构的实际位置反馈给控制系统,并与设定的位置进行比较,然后通过控制系统进行调整,从而使执行机构以一定的精度达到设定位置[3]。
2.1机械手的总体设计
2.1.1 机械手总体结构的类型
工业机器人的结构形式主要有直角坐标结构,圆柱坐标结构,球坐标结构,关节型结构四种。各结构形式及其相应的特点,分别介绍如下。
1.直角坐标机器人结构
直角坐标机器人的空间运动是用三个相互垂直的直线运动来实现的,如图a2-1.。由于直线运动易于实现全闭环的位置控制,所以,直角坐标机器人有可能达到很高的位置精度(μm级)。但是,这种直角坐标机器人的运动空间相对机器人的结构尺寸来讲,是比较小的。因此,为了实现一定的运动空间,直角坐标机器人的结构尺寸要比其他类型的机器人的结构尺寸大得多。
直角坐标机器人的工作空间为一空间长方体。直角坐标机器人主要用于装配作业及搬运作业,直角坐标机器人有悬臂式,龙门式,天车式三种结构。
2.圆柱坐标机器人结构
圆柱坐标机器人的空间运动是用一个回转运动及两个直线运动来实现的,如图2-1.b。这种机器人构造比较简单,精度还可以,常用于搬运作业。其工作空间是一个圆柱状的空间。
3. 球坐标机器人结构
球坐标机器人的空间运动是由两个回转运动和一个直线运动来实现的,如图2-1.c。这种机器人结构简单、成本较低,但精度不很高。主要应用于搬运作业。其工作空间是一个类球形的空间。
4. 关节型机器人结构
关节型机器人的空间运动是由三个回转运动实现的,如图2-1.d。关节型机器人动作灵活,结构紧凑,占地面积小。相对机器人本体尺寸,其工作空间比较大。此种机器人在工业中应用十分广泛,如焊接、喷漆、搬运、装配等作业,都广泛采用这种类型的机器人。
关节型机器人结构,有水平关节型和垂直关节型两种。
2.1.2 设计具体采用方案
机械手工作布局图2-2
具体到本设计,因为设计要求搬运的加工工件的质量6KG,且时考虑到冲压机床布局的具体形式及对机械手的具体要求,考虑在满足系统工艺要求的前提下,尽量简化结构,以减小成本、提高可靠度。该机械手在工作中需要3种运动,其中手臂的伸缩和立柱升降为两个直线运动,另一个为手臂的回转运动,综合考虑,机械手自由度数目取为3,坐标形式选择圆柱坐标形式,即一个转动自由度两个移动自由度,其特点是:结构比较简单,手臂运动范围大,且有较高的定位准确度。
2.2 机械手腰座结构的设计
进行了机械手的总体设计后,就要针对机械手的腰部、手臂、手腕、末端执行器等各个部分进行详细设计。
机械手腰座结构的设计要求
工业机器人腰座,就是圆柱坐标机器人,球坐标机器人及关节型机器人的回转基座。它是机器人的第一个回转关节,机器人的运动部分全部安装在腰座上,它承受了机器人的全部重量。在设计机器人腰座结构时,要注意以下设计原则:
1.腰座要有足够大的安装基面,以保证机器人在工作时整体安装的稳定性。
2.腰座要承受机器人全部的重量和载荷,因此,机器人的基座和腰部轴及轴承的结构要有足够大的强度和刚度,以保证其承载能力。
3.机器人的腰座是机器人的第一个回转关节,它对机器人末端的运动精度影响最大,因此,在设计时要特别注意腰部轴系及传动链的精度与刚度的保证。
4.腰部的回转运动要有相应的驱动装置,它包括驱动器(电动、液压及气动)及减速器。驱动装置一般都带有速度与位置传感器,以及制动器。
5.腰部结构要便于安装、调整。腰部与机器人手臂的联结要有可靠的定位基准面,以保证各关节的相互位置精度。要设有调整机构,用来调整腰部轴承间隙及减速器的传动间隙。
6.为了减轻机器人运动部分的惯量,提高机器人的控制精度,一般腰部回转运动部分的壳体是由比重较小的铝合金材料制成,而不运动的基座是用铸铁或铸钢材料制成。
2.2.1 机械手腰座设计的具体采用方案
腰座回转的驱动形式要么是电机通过减速机构来实现,要么是通过摆动液压缸或液压马达来实现,目前的趋势是用前者。因为电动方式控制的精度能够很高,而且结构紧凑,不用设计另外的液压系统及其辅助元件。考虑到腰座是机器人的第一个回转关节,对机械手的最终精度影响大,故采用电机驱动来实现腰部的回转运动。一般电机都不能直接驱动,考虑到转速以及扭矩的具体要求,采用大传动比的齿轮传动系统进行减速和扭矩的放大。因为齿轮传动存在着齿侧间隙,影响传动精度,故采用一级齿轮传动,采用大的传动比(大于10),同时为了减小机械手的整体结构,齿轮采用高强度、高硬度的材料,高精度加工制造,尽量减小因齿轮传动造成的误差。
2.3 机械手手臂的结构设计
机械手手臂的设计要求
机器人手臂的作用,是在一定的载荷和一定的速度下,实现在机器人所要求的工作空间内的运动。在进行机器人手臂设计时,要遵循下述原则;
1.应尽可能使机器人手臂各关节轴相互平行;相互垂直的轴应尽可能相交于一点,这样可以使机器人运动学正逆运算简化,有利于机器人的控制。
2.机器人手臂的结构尺寸应满足机器人工作空间的要求。工作空间的形状和大小与机器人手臂的长度,手臂关节的转动范围有密切的关系。但机器人手臂末端工作空间并没有考虑机器人手腕的空间姿态要求,如果对机器人手腕的姿态提出具体的要求,则其手臂末端可实现的空间要小于上述没有考虑手腕姿态的工作空间。
3.为了提高机器人的运动速度与控制精度,应在保证机器人手臂有足够强度和刚度的条件下,尽可能在结构上、材料上设法减轻手臂的重量。力求选用高强度的轻质材料,通常选用高强度铝合金制造机器人手臂。目前,在国外,也在研究用碳纤维复合材料制造机器人手臂。碳纤维复合材料抗拉强度高,抗振性好,比重小(其比重相当于钢的1/4,相当于铝合金的2/3),但是,其价格昂贵,且在性能稳定性及制造复杂形状工件的工艺上尚存在问题,故还未能在生产实际中推广应用。目前比较有效的办法是用有限元法进行机器人手臂结构的优化设计。在保证所需强度与刚度的情况下,减轻机器人手臂的重量。
4.机器人各关节的轴承间隙要尽可能小,以减小机械间隙所造成的运动误差。因此,各关节都应有工作可靠、便于调整的轴承间隙调整机构。
5.机器人的手臂相对其关节回转轴应尽可能在重量上平衡,这对减小电机负载和提高机器人手臂运动的响应速度是非常有利的。在设计机器人的手臂时,应尽可能利用在机器人上安装的机电元器件与装置的重量来减小机器人手臂的不平衡重量,必要时还要设计平衡机构来平衡手臂残余的不平衡重量。
6.机器人手臂在结构上要考虑各关节的限位开关和具有一定缓冲能力的机械限位块,以及驱动装置,传动机构及其它元件的安装。
2.3.1 设计具体采用方案
机械手的垂直手臂(大臂)升降和水平手臂(小臂)的伸缩运动都为直线运动。考虑到机械手的动态性能及运动的稳定性,安全性,两手臂的驱动均选择液压驱动方式,通过液压缸的直接驱动,液压缸既是驱动元件,又是执行运动件,不用再设计另外的执行件了;而且液压缸实现直线运动,控制简单,易于实现计算机的控制。
因为液压系统能提供很大的驱动力,因此在驱动力和结构的强度都是比较容易实现的,关键是机械手运动的稳定性和刚度的满足。因此手臂液压缸的设计原则是缸的直径取得大一点(在整体结构允许的情况下),再进行强度的较核。
同时,因为控制和具体工作的要求,通过增设导杆,能显著提高机械手的运动刚度和稳定性,比较好的解决了结构、稳定性的问题。
2.4机械手的手部结构方案设计
气动驱动方式
因为抓取的零件为钣金件毛坯或成品件,使用气流负压式吸盘。
2.5机械手的机械传动机构的设计
1.齿轮传动机构
在机器人中常用的齿轮传动机构有圆柱齿轮,圆锥齿轮,谐波齿轮,摆线针轮及蜗轮蜗杆传动等。
机器人系统中齿轮传动设计的一些问题
(1)齿轮传动形式及其传动比的最佳匹配选择。齿轮传动部件是转矩、转速和转向的变换器用于伺服系统的齿轮减速器是一个力矩变换器。齿轮传动比应满足驱动部件与负载之间的位移及转矩、转速的匹配要求,其输入电动机为高转速,低转矩,而输出则为低转速,高转矩。故齿轮传动系统要有足够的刚度,还要求其转动惯量尽量小,以便在获得同一加速度时所需的转矩小,即在同一驱动功率时,其加速度响应最大。齿轮的啮合间隙会造成传动死区(失动量),若该死区是闭环系统中,则可能造成系统不稳定,常使系统产生低频振荡,因此要尽量采用齿侧间隙小,精度高的齿轮;为尽量降低制造成本,要采用调整齿侧间隙的方法来消除或减小啮合间隙,从而提高传动精度和系统的稳定性。
(2)各级传动比的最佳分配原则。当计算出传动比后,为使减速系统结构紧凑,满足动态性能和提高传动精度的要求,要对各级传动比进行合理的分配,原则如下:
a.输出轴转角误差最小原则。
b.等效转动惯量最小原则。利用该原则设计的齿轮系统要使换算到电动机轴上的等效转动惯量最小,各级传动比也是按照“先小后大”的次序分配,以使其结构紧凑。
具体而言有几点:
(1)对要求运动平稳,起停频繁和动态性能好的伺服系统,按最小等效转动惯量和总转角误差最小的原则来处理。
(2)对于变负载的传动齿轮系统的各级传动比最好采用不可约的比数,避免同期啮合以降低噪音和振动。
(3)对于提高传动精度和减小回程误差为主的传动齿轮系统,按总转角误差最小原则;对于增速传动,由于增速时容易破坏传动齿轮系工作的平稳性,应在开始几级就增速,并且要求每级增速比最好大于1:3,以有利于增加轮系的刚度,减小传动误差。
(4)对以比较大传动比传动的齿轮系,往往需要将定轴轮系和行星轮系结合为混合轮系。对于相当大大传动比、并且要求传动精度与传动效率高,传动平稳以及体积小重量轻时。可选用新型的谐波齿轮传动。
2.谐波齿轮传动
谐波齿轮传动具有结构简单、体积小重量轻,传动比大(几十到几百),传动精度高、回程误差小、噪音低、传动平稳,承载能力强、效率高等一系列优点。故在工业机器人系统中得到广泛的应用。谐波齿轮传动与少齿差行星齿轮传动十分相似,它是依靠柔性齿轮产生的可控变形波引起齿间的相对错齿来传递动力与运动的,故谐波齿轮传动与一般的齿轮传动具有本质上的差别。
3.螺旋传动
螺旋传动及丝杠螺母,它主要是用来将旋转运动变换为直线运动或将直线运动变换为旋转运动。螺旋传动有传递能量为主的,如螺旋压力机、千斤顶等;有以传递运动为主的,如机床工作台的进给丝杠。
丝杠螺母传动分为普通丝杠(滑动摩擦)和滚珠丝杠(滚动摩擦),前者结构简单、加工方便、制造成本低,具有自锁能力;但是摩擦阻力矩大、传动效率低(30%~40%)。后者虽然结构复杂、制造成本高,但是其最大的优点是摩擦阻力矩小、传动效率高(92%~98%),其运动平稳性好,灵活度高。通过预紧,能消除间隙、提高传动刚度;进给精度和重复定位精度高。使用寿命长;而且同步性好,使用可靠、润滑简单,因此滚珠丝杠在机器人中应用很多。由于滚珠丝杠传动返行程不能自锁;因此在用于垂直方向传动时,须附加自锁机构或制动装置。在选用滚珠丝杠要考虑以下几项指标:
(1)滚珠丝杠的精度等级;
(2)滚珠丝杠的传动间隙允许值和预加载荷的期望值;
(3)载荷条件(静、动载荷)以及载荷允许值;
(4)滚珠丝杠的工作寿命;
(5)滚珠丝杠的临界转速;
(6)滚珠丝杠的刚度;
减小滚珠丝杠空回行程的方法,多是采用双螺母结构,使螺母与丝杠之间有一定的预加载荷。这样可以消除传动间隙,提高传动精度与刚度。但是预加载荷会使滚珠丝杠寿命下降,所以,预加载荷不应超过工作载荷的1/3。
4.同步带传动
同步带传动是综合了普通带传动和链轮链条传动优点的一种新型传动,它在带的工作面及带轮外周上均制有啮合齿,通过带齿与轮齿作啮合传动。为保证带和带轮作无滑动的同步传动,齿形带采用了承载后无弹性变形的高强力材料,无弹性滑动,以保证节距不变。同步带具有传动比准确、传动效率高(可达98%)、节能效果好;能吸振、噪声低、不需要润滑;传动平稳,能高速传动(可达40m/s)、传动比可达10,结构紧凑、维护方便等优点,故在机器人中使用很多。其主要缺点是安装精度要求高、中心距要求严格,同时具有一定的蠕变性。同步带带轮齿形有梯形齿形和圆弧齿形。
5.钢带传动
钢带传动的特点是钢带与带轮间接触面积大,是无间隙传动、摩擦阻力大,无滑动,结构简单紧凑、运行可靠、噪声低,驱动力矩大、寿命长,钢带无蠕变、传动效率高。
6.链传动
在机器人中链传动多用于腕传动上,为了减轻机器人末端的重量,一般都将腕关节驱动电机安装在小臂后端或大臂关节处。由于电机距离被传动的腕关节较远,故采用精密套筒滚子链来传动。
7.钢丝绳轮传动
钢丝绳轮传动具有结构简单、传动刚度大、结构柔软,成本较低等优点。其缺点是带轮较大、安装面积大、加速度不宜太高。
2.6设计具体采用方案
具体到本设计,因为选用了液压缸作为机械手的水平手臂和垂直手臂,由于液压缸实现直接驱动,它既是关节机构,又是动力元件。故不需要中间传动机构,这既简化了结构,同时又提高了精度。而机械手腰部的回转运动采用步进电机驱动,必须采用传动机构来减速和增大扭矩。经分析比较,选择圆柱齿轮传动,为了保证比较高的精度,尽量减小因齿轮传动造成的误差;同时大大增大扭矩,同时较大的降低电机转速,以使机械手的运动平稳,动态性能好。这里只采用一级齿轮传动,采用大的传动比(大于10),齿轮采用高强度、高硬度的材料,高精度加工制造。
2.7机械手驱动系统的设计
机器人各类驱动系统的特点
工业机器人的驱动系统,按动力源分为液压、气动和电动三大类。根据需要也可这三种基本类型组合成复合式的驱动系统。这三类基本驱动系统的主要特点如下。
1.液压驱动系统
由于液压技术是一种比较成熟的技术,它具有动力大、力(或力矩)与惯量比大、快速响应高、易于实现直接驱动等特点。适合于在承载能力大,惯量大以及在防火防爆的环境中工作的机器人。但是,液压系统需要进行能量转换(电能转换成液压能),速度控制多数情况下采用节流调速,效率比电动驱动系统低,液压系统的液体泄露会对环境产生污染,工作噪音也较高。
2.气动驱动系统
具有速度快,系统结构简单,维修方便、价格低等特点。适用于中、小负荷的机器人中采用。但是因难于实现伺服控制,多用于程序控制的机器人中。
3.电动驱动系统
由于低惯量、大转矩的交、直流伺服电机及其配套的伺服驱动器(交流变频器、直流脉冲宽度调制器)的广泛采用,这类驱动系统在机器人中被大量采用。这类驱动系统不需要能量转换,使用方便,噪声较低,控制灵活。大多数电机后面需安装精密的传动机构。直流有刷电机不能直接用于要求防爆的工作环境中,成本上也较其他两种驱动系统高。但因为这类驱动系统优点比较突出,因此在机器人中被广泛的使用。
工业机器人驱动系统的选择原则
设计机器人时,驱动系统的选择,要根据机器人的用途、作业要求、机器人的性能规范、控制功能、维护的复杂程度、运行的功耗、性价比以及现有的条件等综合因素加以考虑。在注意各类驱动系统特点的基础上,综合上述各因素,充分论证其合理性、可行性、经济性及可靠性后进行最终的选择。一般情况下:
1.物料搬运(包括上下料)使用的有限点位控制的程序控制机器人,重负荷的选择液压驱动系统,中等负荷的可选电机驱动系统,轻负荷的可选气动驱动系统。
2.用于点焊和弧焊及喷涂作业的机器人,要求具有点位和轨迹控制功能,需采用伺服驱动系统。只有采用液压或电动伺服系统才能满足要求。点焊、弧焊机器人多采用电动驱动系统。重负荷的任意点位控制的点焊及搬运机器人选用液压驱动系统。
机器人液压驱动系统
液压系统自1962年在世界上第一台机器人中应用到现在,已在工业机器人中获得了广泛的应用。目前,虽然在中等负荷以下的工业机器人中大量采用电机驱动系统,但是在简易经济型、重型的工业机器人和喷涂机器人中采用液压系统的还仍然占有很大的比例。
液压系统在机器人中所起的作用是通过电-液转换元件把控制信号进行功率放大,对液压动力机构进行方向、位置、和速度的控制,进而控制机器人手臂按给定的运动规律动作。液压动力机构多数情况下采用直线液压缸或摆动马达,连续回转的液压马达用得很少。在工业机器人中,中、小功率的液压驱动系统用节流调速的为多,大功率的用容积调速系统。节流调速系统,动态特性好,但是效率低。容积调速系统,动态特性不如前者,但效率高。机器人液压驱动系统包括程序控制和伺服控制两类。
1.程序控制机器人的液压系统
这类机器人属非伺服控制的机器人,在只有简单搬运作业功能的机器人中,常常采用简易的逻辑控制装置或可编程控制器对机器人实现有限点位的控制。这类机器人的液压系统设计要重视以下方面:
(1)液压缸设计:在确保密封性的前提下,尽量选用橡胶与氟化塑料组合的密封件,以减小摩擦阻力,提高液压缸的寿命。
(2)定位点的缓冲与制动:因为机器人手臂的运动惯量比较大,在定位点前要加缓冲与制动机构或锁定装置。
(3)对惯量比较大的运动轴的液压缸两侧最好加设安全保护回路,防止因碰撞过载而损坏机械结构。
(4)液压源应该加蓄能器,以利于多运动轴同时动作或加速运动提供瞬时能量储备。
2.伺服控制机器人的液压系统
具有点位控制和连续轨迹控制功能的工业机器人,需要采用电-液伺服驱动系统。其电-液转换和功率放大元件有电-液伺服阀,电-液比例阀,电-液脉冲阀等。由以上各类阀件与液压动力机构可组成电-液伺服马达,电-液伺服液压缸,电-液步进马达,电-液步进液压缸,液压回转伺服执行器(RSA-Rotory Serve Actuator)等各种电-液伺服动力机构。根据结构设计的需要,电-液伺服马达和电-液伺服液压缸可以是分离式,也可以是组合成为一体。如果是分离式的连接方式,要尽量缩短连接管路,这样可以减少伺服阀到液压机构间的管道容积,以增大液压固有频率。
在机器人的驱动系统中,常用的电-液伺服动力机构是电-液伺服液压缸和电-液伺服摆动马达,也可以用电-液步进马达。液压回转执行器是一种由伺服电机,步进电机或比例电磁铁带动的一个安放在摆动马达或连续回转马达转子内的一个回转滑阀,通过机械反馈,驱动转子运动的一种电-液伺服机构。它可安装在机器人手臂和手腕的关节上,实现直接驱动。它既是关节机构,又是动力元件。
机器人气动驱动系统
气动机器人采用压缩空气为动力源,一般从工厂的压缩空气站引到机器人作业位置,也可以单独建立小型气源系统。由于气动机器人具有气源使用方便、不污染环境、动作灵活迅速、工作安全可靠、操作维修简便以及适宜在恶劣环境下工作等特点,因此它在冲压加工、注塑及压铸等有毒或高温条件下作业,机床上、下料,仪表及轻工行业中、小型零件的输送和自动装配等作业,食品包装及运输,电子产品输送、自动插接,弹药生产自动化等方面获得大量应用。
气动驱动系统在多数情况下是用于实现两位式的或有限点位控制的中、小机器人中的。这类机器人多是圆柱坐标型和直角坐标型或二者的组合型结构;3-5个自由度;负荷在200N以下;速度300-1000mm/s;重复定位精度为+/-0.1-0。5mm。控制装置目前多数选用可编程控制器(PLC)。在易燃、易爆的场合下可采用气动逻辑元件组成控制装置。气动驱动系统大体由以下几部分组成。
1.气源 由总压缩空气站提供。气源部分包括空气压缩机,储气罐,气水分离器,调压器,过滤器等。如果没有压缩空气站的条件,可以按机器人及配套的其他气动设备需要配置相应供气量的气源设备。
2.气动三联件 由分水滤气器,调压器,油雾器三大件组成,可以是分离式,也可以是三联组装式的,多数情况下用三联组装式结构。不论是由压缩空气站供气还是用单独的气源,气动三联件是必备的。虽然用无润滑气缸可以不用油雾器,但是一般情况下,建议也在气路上装上油雾器,以减少气缸摩擦力,增加使用寿命。
3.气动阀 气动阀的种类很多,在工业机器人的气动驱动系统中,常用的阀件有电磁气阀、节流调速阀、减压阀等。
4.气动执行机构 多数情况下使用气缸(直线气缸或摆动气缸)。直线气缸分单动式和双动式两类。除个别用单动式气缸外(如手爪机构上用的),多数采用双动气缸。为实现端部缓冲,要选用双向端点位置缓冲的气缸。气缸的结构形式以及与机器人机构的连接方式(如法兰连接,尾部铰接,前端或中间铰接,气缸杆的螺纹连接或铰接等)由设计机器人时根据结构要求而定。气缸的内径,行程大小可根据对机器人的运动分析和动力分析进行计算。
为了确保气缸的密封要求,同时又要尽量降低摩擦力,密封材料要选用橡胶和氟化塑料组合的密封环。无接触感应式气缸目前在气动系统中已获得广泛的应用,这种气缸在活塞上装有永久磁铁的磁环,通过磁感应,使在气缸外面安装的非接触磁性接近开关动作发讯,进行位置检测。除了直线气缸外,机器人中用得比较多还有有限角摆动气缸,这种摆动缸多用于手腕机构上。
5.制动器 气动机器人的定位问题很大程度上是如何实现停点的制动。气缸活塞的运动速度容许达1.5m/s,如果气缸以1m/s的速度计算,电磁气阀以较大关闭时间70ms计,那么气缸活塞两个停点的距离约为70mm,两个停点的步长应大于这个数值。对于小流量的电磁气阀,吸合关闭时间较小,停点的步长也要相应缩短。因此对机器人一个单自由度而言,停点数目最多6-9个。为增加定位点数,除采用多位置气缸外可采用制动的方法还有:反压制动,制动装置制动。
6.限位器 气动机器人各运动轴的制动和定位点到位发讯,可由编程器发指令,或由限位开关发讯。根据要求和条件,如果选用无接触感应式气缸,其限位开关是无接触接近开关,这种开关的反映时间小于20ms,在机器人中应用比较理想。当气缸活塞运动到定位点时,为保证定位精度,需要将运动轴锁紧。常用的限位机构是由电磁阀控制的气缸带动锁紧机构(插锁,滑块等)将机器人运动机构锁定。再启动时,事先打开锁紧机构。
机器人电动驱动系统
这些年来,针对机器人,数控机床等自动机械而开发的各种类型的伺服电动机及伺服驱动器的大量出现,为机器人驱动系统的更新创造了条件。由于高起动力矩、大转矩低惯量的交、直流电机在机器人中的应用,因此一般情况下,负重在100kg以下的工业机器人大多数采用电动驱动系统。其驱动原理方块图如下所示:
在机器人驱动系统中应用的电动机大致可分为如下类型:小惯量永磁直流伺服电动机,有刷绕组永磁直流伺服电动机,大惯量永磁直流伺服电动机(力矩电机),反应式步进电机,同步式交流伺服电动机,异步式交流伺服电动机。
速度传感器多数用的是测速发电机,位置传感器多数用光电编码器。伺服电动机可与测速发电机、光电编码器、制动器、减速器相结合,实现部分组合、由几种组合或全部组合,形成伺服电动机驱动单元。为了提高机器人的传动精度,国外近几年开发了直接驱动电动机,并将多级旋转变压器组合在一起,这种旋转变压器每转可达40-60万个脉冲,这种直接驱动的电机(DD驱动电机)在快速高精度定位的装配机器人中已经得到应用。
1.机器人驱动系统电机的选择
机器人的驱动系统电机的选择要根据机器人的用途、功能、结构特点,结合各类电机自身的特点、性能、结构特点以及性能价格比等综合考虑进行。根据机器人各运动轴所计算的、要求电机的转速、负载额定力矩、加减速特性、额定功率、加速功率等参数选择电机型号。有关各类驱动电动机主要特点及性能、结构特点、用途及使用范围、适用的驱动器见表2-1:
表2-1
名 称
主要特点及性能
结构特点
用途及使用范围
驱动器
小惯量直流永磁伺服电动机
电机的惯量小,理论加速度大,快速反应性好,低速性好,调速比可达1:10e4范围,但低速输出力矩不大,
转子直径小,惯量小
适用于对快速性要求严格而负载力矩不大的场合
直流PWM伺服驱动器SCR变压驱动器
有刷绕组永磁直流伺服电动机
转动惯量小,快速响应性能好;转子无铁损,效率高;换向性能好,寿命长;负载波动对转速影响小,输出力矩平稳。
无铁心,具有轴向平面间隙
可频繁起制动、正反转工作,响应迅速,适用于机器人,数控等
直流PWM伺服驱动器,SCR变压驱动器
大惯量永磁直流伺服电动机
输出力矩大,转矩波动小,机械特性硬度大,可以长时间工作在堵转条件下
又称力矩电机,其转子较粗
适用于驱动力矩较大的场合,因可不用齿轮传动,消除了齿轮间隙
直流PWM伺服驱动器,SCR变压驱动器
表2-1续表
反应步进电机
将电脉冲信号直接转换成转角,转角与脉冲数成正比,输出力矩也较大
电机转子无转租,由永磁体构成转子磁极
用于数字系统中作为执行元件,如数控机床、机器人;开环控制
直流PWM伺服驱动器SCR变压驱动器
同步交流伺服电动机
转速与定子绕组所建立的旋转磁场严格同步;从低度到高速,定子绕组可通过大电流,故起、制动转矩不降低,可频繁起、制动
转子由永久磁铁做成,定子有三相,转子比较细
主要用于中小容量的伺服驱动系统中,如数控、机器人等系统中
交流PWM变频调速器
异步交流伺服电动机
转速永远低于定子绕组所建立的旋转磁场,机构简单,容量大,价格低
定子由对称三相绕组组成,
用于数控机床主轴等容量大的场合
交流PWM变频调速器
2.机器人电动驱动系统伺服驱动器
(1)直流电机伺服驱动器
直流伺服电机驱动器目前多采用脉冲宽度调制(PWM)伺服驱动器。其电源电压为固定不变值,由大功率三极管作为开关元件,以固定的开关频率动作,但其脉冲宽度可以随电路控制而改变,改变了脉冲宽度也就可以改变加在电机电枢两端的平均电压,从而改变了电机的转速。这种伺服驱动器一般由电流内环和速度外环组成。末级采用大功率三极管构成桥式开关电路。
PWM伺服驱动器具有调速范围宽、低速特性好,响应快、效率高、过载能力强等特点。目前已广泛应用于各类数控机床、工业机器人及其它机电一体化产品中用做直流伺服电机的驱动。
(2)步进电机驱动器
步进电机的控制装置主要包括脉冲发生器,环行分配器和功率放大器等几部分组成。
脉冲发生器可以按照起、制动及调速要求改变频率、以控制步进电机。环行分配器是控制步进电机各绕组按一定的次序通过的环节。它的作用是把脉冲发生器送来的一系列脉冲信号按照一定的循环规律依次分配给各绕组,以使步进电机按着一定的规律运动。
功率放大器的作用是将环行分配器输出的毫安级电流放大成安培级电流以驱动步进电机。目前功率放大器多采用高低压驱动电路。这种电路有高、低压二组电源。当绕组刚通电瞬间让绕组接通高电压,从而使各相电流迅速建立。而当达到步进电机额定电流时仅以低电压给各相绕组供电。高电压加入的时间长短由控制电路来实现。
2.7.1设计具体采用方案
具体到本设计,在分析了具体工作要求后,综合考虑各个因素。机械手腰部的旋转运动需要一定的定位控制精度,故采用步进电机驱动来实现;因为采用液压执行缸来做水平手臂和垂直手臂,故大小臂均采用液压驱动;机械手的手部结构设计 在工件是板料,使用气流负压式吸盘.采用气动驱动.
3.1系统设计计算
3.1.1确定液压系统基本方案
液压执行元件大体分为液压缸和液压马达,前者实现直线运动,后者实现回转运动。二者的特点及适用场合见表3-1:
表3-1
名 称
特 点
适 用 场 合
双活塞杆液压缸
双向对称
双向工作的往复场合
单活塞杆液压缸
有效工作面积大、
双向不对称
往返不对称的直线运动,差动连接可实现快进
柱塞缸
结构简单
单向工作,靠重力或其它外力返回
摆动缸
单叶片式小于360
双叶片式小于180
小于360的摆动;
小于180的摆动
齿轮马达
结构简单、价格便宜
高转速、低转矩的回转运动
叶片马达
体积小、转动惯量小
高速低转矩、动作灵敏的回转运动
摆线齿轮马达
体积小、输出转局大
低速、小功率大转矩的回转运动
轴向柱塞马达
运动平稳、转矩大、转速范围宽
大转矩的回转运动
径向柱塞马达
转速低,结构复杂,输出转矩大
低速大转矩回转运动
本设计因为机械手的形式为圆柱坐标形式,具有3个自由度,一个转动,两个移动自由度。同时考虑机械手的工作载荷和工作现场环境对机械手布局以及定位精度的具体要求以及计算机的控制的因素,腰部的回转用电机驱动实现,剩下的两个运动均为直线运动。因此,机械手的水平手臂和垂直手臂都采用单活塞杆液压缸,来实现直线往复运动。
3.1.2拟定液压执行元件运动控制回路
液压执行元件确定后,其运动方向和运动速度的控制是液压回路的核心问题。
方向控制是用换向阀或是逻辑控制单元来实现。对于一般中小流量的液压系统,通过换向阀的有机组合来实现所要求的动作。对高压大流量的系统,多采用插装阀与先导控制阀的逻辑组合来实现。
速度控制通过改变液压执行元件输入或输出的流量或者利用密封空间的容积变化来实现。相应的调速方式有节流调速、容积调速以及二者结合的容积节流调速。
本设计的方向控制采用电磁换向阀来实现,而速度的控制主要采用节流调速,主要方式是采用比较简单的节流阀来实现。
液压源系统的设计
液压系统的工作介质完全由液压源来提供,液压源的核心是液压泵。节流调速系统一般用定量泵供油,在无其他辅助油源的情况下,液压泵的供油量要大于系统的需油量,多余的油经溢流阀流回油箱,溢流阀同时起到控制并稳定油源压力的作用。容积调速系统多用变量泵供油,用安全阀来限定系统的最高压力。
油液的净化装置是液压源中不可缺的元件。一般泵的入口要装粗滤油器,进入系统的油液根据要求,通过精滤油器再次过滤。为防止系统中杂质流回油箱,可在回油路上设置磁过滤器。根据液压设备所处的环境及对温升的要求,还要考虑加热、冷却等措施。
本设计的液压系统采用定量泵供油,由溢流阀V1来调定系统压力。为了保证液压油的洁净,避免液压油带入污染物,故在油泵的入口安装粗过滤器,而在油泵的出口安装精过滤器对循环的液压油进行净化。
3.1.3确定液压系统的主要参数
液压系统的主要参数是压力和流量,他们是设计液压系统,选择液压元件的主要依据。压力决定于外载荷,流量取决于液压执行元件的运动速度和结构尺寸。
1.计算液压缸的总机械载荷
根据机构的工作情况液压缸所受的总机械载荷为
(3-1)
式中, -----为外加的载荷,因为水平方无外载荷,故为0;
------为活塞上所受的惯性力;
------为密封阻力;
------为导向装置的摩擦阻力;
------为回油被压形成的阻力;
(1)的计算
(3-2)
式中, ------为液压缸所要移动的总重量,取为100KG;
------为重力加速度, ;
------为速度变化量;
------启动或制动时间,一般为0.01-0.5,取0.2s
将各值带入上式,得:=1.02
(2)的计算
(3-3)
式中,-----克服液压缸密封件摩擦阻力所需空载压力,如该液压缸工作压力<16 ,查相关手册取=0.2 ;
------为进油工作腔有效面积;
启动时: 565N
运动时: =283N
(3)的计算
机械手水平方向上有两个导杆,内导杆和外导套之间的摩擦力为
(3-4)
式中,------为机械手和所操作工件的总重量,取为100KG;
------为摩擦系数,取f=0.1;
带入数据计算得: =98
(4)的计算
回油背压形成的阻力按下式计算
(3-5)
式中,-----为回油背压,一般为0.3-0.5 ,取=0.3
-----为有杆腔活塞面积,考虑两边差动比为2;
将各值带入上式有,
分析液压缸各工作阶段受力情况,作用在活塞上的总机械载荷为
。
3.1.5.液压缸主要参数的确定
针对本设计是一个机械手的特点考虑,机械手系统的刚度及其稳定性是很重要的。因此,先从刚度角度进行液压缸缸径的选择,以尽量优先保证机械手的结构和运动的稳定性、安全性。至于液压缸的工作压力和缸的工作速度,放在液压系统设计阶段,通过外部的液压回路、采用合适的调速回路和元件来实现。经过仔细分析,综合考虑各方面的因素,初步确定各液压缸的基本参数如下;
表3-3 水平伸缩液压缸参数
缸内径
壁厚
杆直径
行程
工作压力
60
10
25
400
1
因为伸缩缸的作用主要是实现伸缩直线运动这个运动形式,在其轴向上并不承受显性的工作载荷,轴向主要是克服摩擦力矩,其所受的载荷主要是径向载荷,载荷性质为弯矩,使其产生弯曲变形。而且因为机械手要求具有一定的柔性,水平液压缸活塞杆要求具有比较大的工作行程。同时具有比较大的弯矩和比较长的行程,这对液压缸的稳定性和刚度问题有较高的要求。
因此,在水平伸缩缸的设计上,一是增大其抗弯能力,二是通过合理的结构布局设计,使其具有尽量大的刚度。为了达到这个目的,设计中采用了两个导向杆,以满足长行程活塞杆的稳定性和导向问题。另一方面,为增大结构的刚度和稳定性,将两个导向杆与活塞杆布局成等边三角形的截面形式,以增大抗弯截面模量,也大大增加了液压缸的工作刚度。
表3-4 垂直液压缸参数
缸内径
壁厚
杆直径
行程
工作压力
60
10
25
400
1
因为垂直液压缸所承受的载荷方式既有一定的轴向载荷,又存在着倾覆力矩(由加工工件的重力引起的)。作为液压执行元件,满足此处的驱动力要求是轻而易举的,要解决的关键问题仍然是它的结构设计能否有足够的刚度来抗倾覆。这里同样采用了导向杆机构,围绕垂直升降缸设置四根导杆,较好的解决了这一问题。
4.液压缸强度的较核
(1)缸筒壁厚的较核
当 D/时,液压缸壁厚的较核公式如下:
(3-10)
式中,----为缸筒内径;
----为缸筒试验压力,当缸的额定压力时,取为;
----为缸筒材料的许用应力,,为材料抗拉强度,经查相关资料取为650,为安全系数,此处取;
带入数据计算,上式成立。因此液压缸壁厚强度满足要求。
(2)活塞杆直径的较核
活塞杆直径的较核公式为
(3-11)
式中, -----为活塞杆上作用力;
-----为活塞杆材料的许用应力,此处;
带入数据,进行计算较核得上式成立,因此活塞杆的强度能满足工作要求。
3.1.4计算和选择液压元件
1.液压泵的计算
(1)确定液压泵的实际工作压力
(3-12)
式中,-------计算工作压力,前以定为;
------对于进油路采用调速阀的系统,可估为(0.5~1.5),这里取为1。
因此,可以确定液压泵的实际工作压力为
(3-13)
(2)确定液压泵的流量
(3-14)
式中,------为泄露因数,取1.1;
-----为机械手工作时最大流量。
(3-15)
经计算得 =3.140
带入上式得
(3)确定液压泵电机的功率
(3-16)
式中,------为最大运动速度下所需的流量,同前,取为3.140;
-------液压泵实际工作压力,5;
------为液压泵总效率,取为0.8;
带入数据计算得: =。
2.控制元件的选择
根据系统最高工作压力和通过该阀的最大流量,在标准元件的产品样本中选取各控制元件。这部分在考虑具体的作业时根据详细的要求再结合具体情况进行详细,这里暂从略。
3.油管及其他辅助装置的选择
(1)查阅设计手册,选择油管公称通径、外径、壁厚参数
液压泵出口流量以3.140L/MIN计,选取;液压泵吸油管稍微粗些,选择;其余都选为;
(2)确定油箱的容量
一般取泵流量的3-5倍,这里取为5倍,有效容积为
(3-17)
3.1.7液压系统性能的验算
绘制液压系统图后,进行压力损失验算。因为该液压系统比较简单,该项验算从略。本系统采用液压回路简单,效率比较高,功率小,发热少,油箱容量取得较大,因此,不再进行温升验算。
3.2 电机选型有关参数计算
3.2.1有关参数的计算
1.若传动负载作回转运动
负载额定功率: (3-24)
负载加速功率: (3-25)
负载力矩(折算到电机轴):
(3-26)
负载GD(折算到电机轴):
(3-27)
起动时间:
(3-28)
制动时间:
(3-29)
式中,-----为额定功率,KW;
-----为加速功率,KW;
-----为负载轴回转速度,r/min;
-----为电机轴回转速度,r/min;
-----为负载的速度,m/min;
-----为减速机效率;
-----为摩擦系数;
-----为负载转矩(负载轴),;
-----为电机启动最大转矩,;
-----为负载转矩(折算到电机轴上),;
-----为负载的,;
-----为负载(折算到电机轴上),;
-----为电机的,;
具体到本设计,因为步进电机是驱动腰部的回转,下面进行具体的计算。
因为腰部回转运动只存在摩擦力矩,在回转圆周方向上不存在其他的转矩,则在回转轴上有;
(3-30)
式中,-----为滚动轴承摩擦系数,取0.005;
-----为机械手本身与负载的重量之和,取100;
-----为回转轴上传动大齿轮分度圆半径,R=240;
带入数据,计算得 =0.12;
同时,腰部回转速度定为=5r/min;传动比定为1/12;
且, 带入数据得: =10.45667。
将其带入上(3-24)~(3-30)式,得:
启动时间 ;
制动时间 ;
折算到电机轴上的负载转矩为:。机械手的回转角度为30度/秒
3.2电机型号的选择
根据以上结果,综合考虑各种因素,选择国产北京和利时电机技术有限公司(原北京四通电机公司)的步进电机,具体型号为: YG550B-SAKRMA-0301 或 110BYG550B-SAKRMT-0301 或 110BYG550B-BAKRMT-0301,
该步进电机高转矩,低振动,综合性能很好。下图为110BYG550B-SAKRMA-0301型步进电机矩频特性曲线和相关技术参数。
驱动方式:升频升压; 步距角:0.36°;
其中步距角0.36,同时因为腰部齿轮传动比为1:12,步进电机经过减速后传递到回转轴,回转轴实际的步距角将为电机实际步距角的1/12(理论上),虽然实际上存在着间隙和齿轮传动非线性误差,实际回转轴的最小步距角也仍然是很小的,故其精度是相当高,完全能满足机械手上下料的定位精度要求。
所选电机相关参数
图3-2
图3-3 110BYG550B-SAKRMA-0301步进电机的矩频
特性曲线
3.3吸盘的选择和计算
1.负压式吸盘是利用吸盘(即用橡胶或软性塑料制成皮腕)内形成负压将工件吸住。它适用于搬运一些薄片形状的工件,如薄铁片、板材、纸张以及薄壁易碎的玻璃器皿、弧形壳体零件等,尤其是玻璃器皿及非金属薄片,吸附效果更为明显。
气流负压式与钳爪式手部相比较,气流负压式手部具有结构简单,重量轻,表面吸附力分布均匀,但要求所吸附表面平整光滑、无孔和无油。按形成负压(或真空)的方法,气流负压式手部可分为真空式、气流负压式和挤压排气式吸盘。在本机械手中,拟采用喷射式气流负压吸盘。
下面计算吸盘的直径:
2.吸力的计算公式为:
式中:P—吸盘吸力(N),本机械手的吸盘吸力为60N,故P=60N;
D — 吸盘直径((cm).
n — 吸盘数量,本机械手吸盘数量为2;
K1—吸盘吸附工件在起动时的安全系数,可取K,在此取K1=1.5;
K2—工作情况系数。若板料间有油膜存在则要求吸附力大些;若装有分料器,则吸附力就可小些。另外工件从模具取出时,也有摩擦力的作用,同时还应考虑吸盘在运动过程中由于加速运动而产生的惯性力影响。因此,应根据工作条件的不同,选取工作情况系数,一般可在(1-3的范
收藏
编号:43957835
类型:共享资源
大小:801.36KB
格式:ZIP
上传时间:2021-12-05
45
积分
- 关 键 词:
-
液压驱动 三自由度圆柱坐标式
冲床上下料机械手设计【液压驱动
三自由度圆柱坐标式】
冲床
上下
机械手
设计
液压
驱动
自由度
圆柱
坐标
- 资源描述:
-
喜欢这套资料就充值下载吧。资源目录里展示的都可在线预览哦。下载后都有,请放心下载,文件全都包含在内,图纸为CAD格式可编辑,有疑问咨询QQ:414951605 或 1304139763p
展开阅读全文
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

装配图网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。