(完整word版)拉普拉斯变换公式
《(完整word版)拉普拉斯变换公式》由会员分享,可在线阅读,更多相关《(完整word版)拉普拉斯变换公式(5页珍藏版)》请在装配图网上搜索。
1、419附录 A 拉普拉斯变换及反变换1.表 A-1 拉氏变换的基本性质1线性定理齐次性Laf(t) =aF(s)叠加性L fi(t)f2(t)=Fds)F2(s)2亠(0)2微分定理一般形式-Lff(t)=snF(s)_ snf dtk 土0)7dk-f (t)f(t)=十dt一初始条件为 0 时L譽5s).F(s)【f(t)dttqL jf(t)dt_F(s)+ss一般形式N2F(s)Jf(t)dtyLf(t)(dt) _即 +2ssJf(t)(dt)2ys3积分定理共2个nLf叮f (t)(dt)n=洋占sk仝s共卫个(f(t)(dt)ny初始条件为 0 时共HLJf(t)(dt)nF(n
2、s)fs4延迟定理(或称t域平移定理)Lf(t T)1(t T)=eF(s)5衰减定理(或称s域平移定理)Lf (t)et=F(s + a)6终值定理lmf=lim sF(s)7初值定理lim f (t) = lim sF(s)Ts)PC8卷积疋理L f1(t f2d =L0f1(t) f2(tE)dl = F1(s)F2(s)2 .表 A-2 常用函数的拉氏变换和z 变换表420序号拉氏变换 E(s)时间函数 e(t)Z 变换 E(z)113(t)121崭=迟务(t _nT)n-0.z彳工1 eZ_131 s1(t)zZ_141tTz2s(Z-1)251t2T2Z(Z+1)3s22(z1)3
3、61n +stnn!匕)71atzs +ae_aTze81上-atteT-aTTze(s+a)2/-aT、2(z-e )9a”-at1 -e(1-efzs(s +a)(z1)(zeT)10b a-atbtzz(s +a)(s +b)e -e-aTzez e11osintzsi ncoTs2z 2zcos国T +112scostz(z cosccT)S2P2z2-2zcoscoT +113oetsintze si ncoT2 2(s+a) Wz2-2zeTcosT +eaT14s+aetcos灼tz2-zeTcosoT22(s+a)+ 国z2-2zeTcoscoT +e=aT151t/Tazs
4、(1 /T)lnaz -a4213.用查表法进行拉氏反变换用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行 反变换。设F(s)是s的有理真分式bmSm- bmsm, ds boans - ans亠a1sa0式中系数ao, ai,., an j,an,b,bi,bm,bm都是实常数;m,n是正整数。按代数定理可将F(s)展开为部分分式。分以下两种情况讨论。A(s) = 0无重根这时,F(s)可展开为 n 个简单的部分分式之和的形式。F(s)B(s)A(s)CiC2F (s)12CiCns siS S2s s s sn(F-1)式中,q,S2,Sn是特征方程 A(s) =
5、 0 的根。Ci为待定常数,称为按下式计算:或C二lim (s - si)F (s)F(s)在S处的留数,可(F-2)CiB(s)A(s)式中,A(s)为A(s)对s的一阶导数。根据拉氏变换的性质,从式(n厂nf (t) = L,1F(S)】二匡一=Z CieL i mS Sj一i =1(F-3)F-1)可求得原函数(F-4)A(s)二0有重根设A(s) = 0有 r 重根s1, F(s)可写为Fs(S s) (SSr十)(S Sn)Cr(S-汀_CLJ_- g一_ 一_Cn(s- Si)S -Sr 1S一SjS一Sn2 .表 A-2 常用函数的拉氏变换和z 变换表422式中,Si为 F(s)的 r 重根,Sr 1,Sn为 F(s)的 n-r 个单根;423其中,Cr 1,Cn仍按式(F-2)或(F-3)计算,Cr, 6,Ci则按下式计算:cr 1= lim (s -s) F (s)一dss :siiid(r-(r -i)!卽ds(rJ原函数f(t)为f (t) = Lr_F(s) 1rcr= lim (s-Si) F (s)LCr丄卡.* +Ci +Cr *. ”(S-S)(S-S) S-SriS -Si亠t_(r -i)!Cr二tr 2(r-2)!C2t CieSit,CieSit(F-6)(F-5)(s-Si)rF(s)Cr _j(s-Si)rF(s)Ci
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。