水面垃圾清理机器说明书

上传人:文*** 文档编号:49090241 上传时间:2022-01-17 格式:DOC 页数:20 大小:13.37MB
收藏 版权申诉 举报 下载
水面垃圾清理机器说明书_第1页
第1页 / 共20页
水面垃圾清理机器说明书_第2页
第2页 / 共20页
水面垃圾清理机器说明书_第3页
第3页 / 共20页
资源描述:

《水面垃圾清理机器说明书》由会员分享,可在线阅读,更多相关《水面垃圾清理机器说明书(20页珍藏版)》请在装配图网上搜索。

1、 水面垃圾清理机器的设计 目录 专业课程设计说明书 1 一.摘要 2 二.Abstract 3 三.引言 4 四. 机器人结构设计 4 四.1 整体结构设计理念 4 四.2 整体结构设计 5 四.3 垃圾收集装置设计 6 四.4 垃圾辅助收集装置设计 6 五.船重和排水量的计算 7 六.最大吃水深度的计算 7 七.动力装置设计 8 八.硬件设计 10 八.1系统总体设计 10 八.2电源模块 10 八.3电机驱动模块 11 八.4无线传输模块 11 八.5继电器模块

2、12 八.6主程序设计 12 九. 影像收集系统设计 13 十. 工作参数,待机和工作时长 14 十一. 垃圾收集特性及参数 14 十二.外观特性 15 十三. 控制方式 15 十四. 成本报告 15 十六. 市场分析 19 十六.1 市场推广 19 十六.2 盈利模式 19 结束语 19 参考文献: 20 一.摘要 本文为解决现如今小型封闭水面垃圾清理耗费人力物力等问题,设计制作了一款由人工辅助远程遥控进行水面垃圾清理的机器人。水面垃圾打捞船针对水面环境污染的问题,主要致力于中小型湖泊河流等水域的固体垃圾清理,如塑料袋、饮料瓶,树枝树叶以及其

3、它易清理的水面垃圾。实现水面垃圾清理的机械化与自动化,整个打捞过程无需人工直接参与,安全性非常好,效率大约是人工打捞的几十倍,水面越大、距离越远效果越显著。本文主要对水面垃圾自动打捞船进行了船体结构、动力装置、打捞及传输装置、垃圾存储装置以及其他零部件的设计、计算及校核等。分析了水面垃圾自动打捞船需要实现的功能要求,在实际环境背景下,研究了水面垃圾自动打捞船的系统构成及功能、各零部件的的设计方法以及系统的实现方式。该机器人采用稳定性较高的双船体结构,通过预估的船体大小及载重,选用合理尺寸的PVC方形管作为船体,利用网状式垃圾收集箱存放垃圾,采用旋转滚刷辅助收集垃圾,通过图传系统采集远距离水面垃

4、圾影像,用基于STM32芯片的控制系统进行方向、速度的控制。整个机器人结构合理稳定,外观简洁美观,制作材料合理,成本低廉,采用电力驱动节约能源、无污染,且收集垃圾快速有效。 关键词:人机交互;节约能源;效率高;双船体;图传;STM32;旋转滚刷 二.Abstract In order to solve the problem of the waste disposal of small enclosed water surface, this paper designs a robot which can be used to clean the surface of wat

5、er. Garbage salvage ship the water on the surface of the water environment pollution problem, is mainly engaged in small and medium such as lakes and rivers clear waters of the solid waste, such as plastic bags, bottles, branches and leaves other easy to clean up the water waste. Realize the rubbish

6、 the mechanization and automation of the water, the whole process without human directly involved in the salvage, security is very good, efficiency is about artificial fishing a few times, the bigger surface, the farther the distance effect more significant. In this paper, the design, calculation an

7、d check of the hull structure, power plant, salvage and transmission device, garbage storage device and other parts are carried out. Analyzed the water garbage salvage ship automatically the function of the need to implement, under the background of the actual environment, studied the water garbage

8、salvage ship automatic system structure and function, the design method and the realization of the system of parts of the way. The robot adopts the high stability of double hull structure, through the forecast of the load and the size of hull, choosing reasonable size of the square tube as hull, PVC

9、 using mesh type junk boxes store garbage, USES the rotating roller assisted garbage collection, collection and long distance water waste through figure pass system image, a control system based on STM32 chip for direction and speed control. The whole robot structure is reasonable and stable, the ap

10、pearance is simple and beautiful, the making material is reasonable, the cost is low, the electric power drive saves energy, pollution-free, and the collection of garbage is fast and effective. Key words: human-computer interaction; Energy conservation; High efficiency; Double hull. Figure pass; ST

11、M32; Rotating roller 三.引言 随着社会的发展,人们的生活质量不断提高,产生的垃圾也越来越多,由于环保意识的缺乏,很多垃圾直接或者间接的进入江、河、湖、海,造成现如今水污染严重的局面,而水是生命不可或缺的自然资源,治理水污染势在必行。现如今的水面垃圾清理方法多采用费时、费力的人工打捞,即使有些地方使用机械清理的方式,但大部分都是采用较大型机械,不仅浪费能源,而且还会产生二次污染,难以普及使用。因此设计一款实用性很强的水面垃圾清理收集装置是社会的需要。 本文设计制作的水面垃圾清理机器人结构稳定、灵活,采用电力驱动,无需浪费大量能源且节约环保,由人工远程遥控船体移动并进行

12、垃圾清理,节约了人力、提高了效率,通过其上安装的图传系统能够在远距离情况下精准快速的将垃圾收集。由这些特点可以看出,此款水面垃圾清理机器人可以取代传统的人工打捞方式,有很好的应用前景。 四. 机器人结构设计 四.1 整体结构设计理念 此款水面垃圾清理机器人整体采用双体船结构。双体船结构稳性很好,为了追求快速性能,提高工作效率,现在的船体基本都是细长的,长宽比7:1,甚至9:1。船倾斜后的回复力矩和水线面的惯性矩有关,简单来说细长的船体横摇时回复力矩小,很容易左右摇晃。但是双体船船体分为左右两个,横摇时回复力矩是同样排水量的单体船的若干倍。就好比一个扁担和一块木板扔在水面上,扁担能左右晃

13、不停而木板很稳。而在水面进行垃圾清理,稳定性是非常重要的,双体船可以在承受较大风浪的前提下仍能稳定工作。双体船宽度较大,两船体之间的空间开阔,而此款水面垃圾清理机器人需要安装容量较大的网状式垃圾收集箱,船体宽度范围内需要安装有效的辅助垃圾收集的滚刷结构,另外还需要安装控制系统,而双体船宽阔的空间使得这些设备能够合理有效的布置。 四.2 整体结构设计 两侧船体如图1所示,采用100*150*440mm规格的PVC方形管制成,PVC管重量较轻且密封性能好,是制作船体的很好选择。船体前端和后端均采用流线型结构,可以减小水流阻力,提高船体行驶 速度。前端和后端用PLA材料经3D打印

14、制作而成,强度高,质量轻盈且防水性能好。船头、船尾和PVC方管采用M4圆头螺钉相互连接,连接处以及铆钉处用防水密封胶密封,防止船体因漏水影响正常工作。左右船体内部使用泡沫填充,使得防漏水工作得到双重保障。3D打印船尾底部有螺旋桨固定瓦片,以便螺旋桨推进器的固定。 图1船体实物图及三维模型图 左右船体采用10mm*20mm规格的铁质方管焊接而成的框架连接,如图2。框架总体尺寸为270mm*335mm,顶部采半径125mm的弧形结构,以方便流线型船壳固定,底部为水平结构。船体和框架用螺钉连接,连接处用密封胶进行防水处理,连接后船体总宽度为470mm,左右船体之间空隙尺寸为2

15、50mm*200mm,用以放置垃圾收集箱。 图2船体连接架实物图及三维模型图 四.3 垃圾收集装置设计 水面垃圾清理机器人实现的主要功能是垃圾的收集和倾倒,本设计采用如图3所示网状式垃圾收集装置,容量大可快速更换,可以在有效收集垃圾的前提下减小水流以及空气的阻力,提高工作效率。网状式收集箱采用塑料胶网裁剪制成,边角由PVC拐角固定,总体尺寸为235mm*175mm*550mm。工作时可收集最大直径为90mm的垃圾,通过遥控船体向前移动以及前端辅助装置的运行,使垃圾通过船体中间通道进入垃圾收集箱而不会流出。当收集垃圾完毕后,可由人工辅助将收集箱从船体前端抽出倒入后续

16、垃圾收集装置。 图3垃圾收集箱实物图及三维模型图 四.4 垃圾辅助收集装置设计 如图4所示,水面垃圾清理机器人的最前端设有垃圾辅助收集装置,由旋转式滚刷和垃圾收集挡板组成。旋转式滚刷由滚筒和毛刷构成,滚筒由废旧的玩具船船体加工制成,毛刷由废旧扫把毛经3D打印支架固定于滚筒水平两侧母线。滚筒刷通过3D打印的子弹头型支架固定于15mm*15mm的国标铝材调节梁上,以方便调节辅助装置距离水面的距离。滚筒内部固定有防水电机,电机内部有偏心齿轮,偏心齿轮与作为输出轴的齿轮轴啮合,输出轴通过固定卡具固定于滚筒之上,从而带动滚筒转动辅助垃圾收集。滚刷下方有固定于船体之上的垃圾

17、收集挡板,挡板由3mm厚度的亚克力板通过激光切割制成。挡板上切有直径16mm的若干通孔,从而减小水流对船体的阻力,提高工作效率。当船体向前行驶时,挡板会将分散的垃圾聚集于滚刷之下,从而方便滚刷旋转带动垃圾进入后方收集箱内,保证了垃圾收集的效率,以及收集的稳定性。 图4垃圾辅助收集装置实物图及三维模型图 垃圾收集辅助装置,采用旋转式滚筒刷结构,既可以快速有效的将垃圾带入网状式垃圾箱,又可以防止垃圾从箱内退回流出,其中采用的软毛刷材料,既可以减小空气阻力,又可以在有效带动垃圾 进入收集装置的同时避免垃圾卡在滚筒与水面之间。因此,该辅助装置是非常实用的。 五.船重

18、和排水量的计算 船在满载时的总质量m总=m船+m蓄电池+m其他+m螺旋桨+m垃圾 其中船体的重量约为20kg,蓄电池的重量为2kg,螺旋桨的重量为5kg,所能存储的垃圾的最大重量约为8kg 故总质量 由公式(其中)可得 V排=/ = =0.035m3 该船的重排水量为 六.最大吃水深度的计算 该船的面积由数学公式可得A0.5㎡ 由公式可得船的最大吃水深度为 / 该船的最大吃水深度为70mm,而船体的高度为150mm

19、,故船体的高度满足需求。 七.动力装置设计 船舶推进器是船舶上提供推力的工具,它的作用是将船舶动力装置提供的动力转换成推力,推进船舶。船舶推进器即推动船舶前进的机构。它是把自然力、人力或机械能转换成船舶推力的能量转换器。推进器按作用方式可分为主动式和反应式两类。靠人力或风力驱船前进的纤、帆(见帆船)等为主动式,桨、橹、明轮、喷水推进器、螺旋桨等为反应式。现代运输船舶大多采用反应式推进器,应用最广的是螺旋桨。 根据蓄电池的直流供电特点以及船体的简易结构等特点,选用悬扣式电动船舶推进器,该类推进器功能性强,结构简单,操作方便安全,应用范围广。电动船舶推进器是种新颖的水中动力器具,

20、有体积小、结构紧凑、效能转换率高、工作时无噪音等特点,且还具有绿色环保,按装便捷、维护简易的特点,是一些小型的船艇作为动力的首选产品,比较符合本设计的功能需要。 该类船舶推进器的选用不锈钢、铝合金或高强度合成纤维,保证推进器具有足够的刚性并经久耐用;采用电子调速,以满足不同速度的需要;使操控更加方便;螺栓安装快速方便,并带有防撞脱扣机构,保护马达安全;防缠型螺旋浆,防止推进器因被水草缠绕而堵转。 鉴于船在行驶的过程中会因为水流以及自身结构所造成的阻力而受到影响,故在选择船用推进器的时候就要考虑该船舶推进器的最大推力是否大于船在行驶过程中所受到的最大阻力,并以此为依据来选择合适的船舶推进器

21、。水流对船体的阻力可由下式来确定 式中:—流体阻力系数,一般取 —侵湿面积() —流体的密度() 侵湿面积取船在最大吃水深度时的值,而最大吃水深度在前面计算得为70mm,根据数学方法计算可以可得,设船在水中行驶时的最大速度为1m/s,则船在行驶过程中,水流对船体的阻力为: =115.5N 则由于双体船宽度比一般船舶要宽,吃水也较一般船舶浅,所以根据它的特点,采用了双螺旋桨推进系统。螺旋桨构造简单,造价低廉,使用方便,效率较高,是目前应用最广的推进器。根据螺旋桨叶数不同效率不同的原则,如图5所示,本设计选用了叶数适中的六叶螺旋桨,

22、根据预估的70mm吃水深度,双桨螺旋桨直径 D=1.2xF阻x70mm/100=97mm 得出螺旋桨直径约97mm。将螺旋桨布置于船体两侧尾部下方,既可以保证螺旋桨吃水量,使螺旋桨产生的推力足够且不会浪费,又可以使船体转向灵活、具有很强可操控性。 故根据算出来的值可选择如图5所示的推进器,查得该推进器的基本参数如下所示: 名称:螺旋桨推进器 最大推力:20kg 控制方式:遥控 动力方式:电机推动(蓄电池供电) 变速: 电子调速 电机电压:24V 电机最大电流:60MA 推荐使用蓄电池:24v×60MAh 直径:96mm 长度:190mm

23、重量:4kg  图5动力装置装置图 八.硬件设计 八.1系统总体设计 为实现机器人的人机交互,且能够灵活控制以及实时反馈图像等,本设计主要采用了电源供电模块、电机驱动模块、无线传输模块、开关模块、继电器模块、图传模块等。 本设计选用 32 位微处理控制器 STM32F103C8T6作为主控芯片,其工作主频为 72 MHz,STM32系列是基于 ARM Cortex - M3 内核的处理器,低功耗,处理速度快,能够满足双电机快速差速运动的需要,并自带高速的I 2C、SPI接口控制器,方便与各路传感器模块进行实时数据采集,自带的多路输出PWM模块便于电机的控制,自带的

24、AD采集通道便于实现电压值的采集,实现电机的遥控调速。整个系统由电源管理模块提供电力。 图6 控制系统总体 八.2电源模块 根据电源模块主要是电压为24V,用时10h,电流60MA, 计算电源容量的大小: W=P.T=U.I.T=12v×60Mh×10=14400MAh 容量为15000MAh的锂电池,配有三个稳压模块分别输出1.25~35V可调电压,输出3路不同电压值进行单片机、继电器、图传模块的驱动。 八.3电机驱动模块 电机驱动模块采用 24V 60MA大功率直流电机驱动模块器,H桥全隔离,可满PWM的模块。 其功能特点有: (1)小尺寸,50mm×50mm×

25、12.5mm (2)多重保护,内置过电压、欠电压、过热保护电路 (3)控制信号全隔离,充分兼容3-5V电压输入 (4)大功率,无需再加散热处理,即可驱动60MA电机负载 (5)高速PWM隔离输入,最小脉冲宽度3us,隔离带宽10MHz (6)支持满占空比输入,可脱离MCU,实现外部开关直接控制,可串联限位开关 (7)驱动器运行电压6.5-29V,支持7-24V电压等级直流有刷电动机  (8)具有双色转向指示灯指示电机运转方向。 采用完全隔离的方式控制驱动电机,该方式使用独立的电源对MCU供电,通过光电隔离的形式输入控制信号。 图7 电机驱动 优点:MCU与电机驱

26、动完全电气隔离,使MCU电磁兼容性能大大提高,其次还可保证控制电路的电气安全,即使出现严重的短路过压等情况,也不用担心MCU被串入高压而烧毁,同时具有良好的控制稳定性。 电机采用PWM调速,即改变直流电机电枢电压的的占空比来改变平均电压,从而实现直流电机调速。除了电机对应的PWM信号调速之外,该模块还需要2路逻辑输入控制电机转向,模块连接如图7所示。因此将PWM信号输入端接入单片机定时器输出,逻辑输入端接单片机配置为输出模式的IO口即可实现对该模块的控制。 八.4无线传输模块 如图8,无线传输模块通过串口进行单片机之间的通信,从而实现上位机与主机的数据传输,上位机识别按键发送不同的字符

27、到串口,然后通过无线传输将字符代码发送给主机,主机接收到相应的字符代码后执行对应的动作,从而实现人机交互。 图8 无线传输模块图解 八.5继电器模块 如图9所示,本设计采用的继电器为1路5V继电器,低电平触发,通过单片机控制继电器模块的启停来控制滚刷电机的启动和停止,从而实现对垃圾辅助收集装置的远程控制。 图9 继电器模块图解 八.6主程序设计 该小船软件程序事是在MDK5开发环境下采用 C语言编写,其流程如下图所示。上电后先进行系统初始化,包括时钟配置、延时函数初始化以及调试程序时所需串口的初始化。然后进行定时器的初始化,本系统中定时器用于PWM信号的产生。

28、采用了两个定时器的分别输出两路PWM波,实现双电机的控制。开始时,上位机遥控端不断的发送停止代码,主机处于停止状态。当遥控端有按键按下,即发送对应的代码,主机接收后做出相应的动作。程序设计流程图如图10所示。 图10 软件设计流程图 九. 影像收集系统设计 此款水面垃圾清理机器人需要人工远距离遥控,为了更准确快速的定位到垃圾所在位置,设计安装了如图11所示的图传发射收集系统。采用AOMWAY 5.8g TX001图传发射器,具有重量轻、体积小、方便安装等特点,具有5.8g 40个发射机频道,支持6-28V电压供电,利用手机进行影像接收,图像清晰准确。 图11 图传系统 十

29、. 工作参数,待机和工作时长 该水面垃圾清理机器人采用24V、10000mA锂电池供电,不仅节能减排,而且可长时间工作,具体工作时间参数如下表: 表1 水面垃圾清理机器人工作时长 时间参数 数值/分钟 待机时长 30240 连续工作时长 600 十一. 垃圾收集特性及参数 本设计采用网状式垃圾收集箱,方型结构,总体尺寸为235mm*175mm*550mm。机器人工作时,可收集直径最大为90mm的垃圾,一次性可收集最多0.02m3体积的垃圾。 垃圾收集的便利性 设计采用网状式垃圾收集装置,容量大可快速更换,可以在有效收集垃圾的前提下减小水流以及空气的阻力,提

30、高工作效率。加上船体前端安装有垃圾辅助收集装置,当船体向前行驶时,收集挡板会将分散的垃圾聚集于滚刷之下,从而方便滚刷旋转带动垃圾进入后方收集箱内,保证了垃圾收集的效率,以及收集的稳定性。 垃圾收集箱以及垃圾辅助收集装置结构简单、容易制作,且功能性强,利用简单的机械结构便能实现理想的功能,很适合应用推广。 十二.外观特性 水面垃圾清理机器人整体采用双体船结构,双体船可以在承受较大风浪的前提下仍能稳定工作,且较大的宽度,使得各设备能够合理有效的布置。船体前端和后端均采用流线型结构,可以尽可能的减小水流阻力,减少能源的浪费。 船体保护壳利用亚克力材料弯折成流线型,可以减小空气、风力带来的阻

31、力,提高船体稳定性。 十三. 控制方式 通过串口进行单片机之间的通信,从而实现上位机与主机的数据传输,上位机识别按键发送不同的字符到串口,然后通过无线传输将字符代码发送给主机,主机接收到相应的字符代码后执行对应的动作,从而控制各模块运行方式,实现人机交互。 十四. 成本报告 1 成本概述 表2 总成本一览 系统 材料 工序 紧固件 总成本 船体 ¥104.3 ¥7.52 ¥2.1 ¥113.92 垃圾收集系统 ¥29.625 ¥3 ¥2.5 ¥25.125 控制系统 ¥352.18 ¥0.5 ¥3.9 ¥356.18 动力

32、系统 ¥225.7 ¥1.1 ¥0.8 ¥227.6 图传系统 ¥113.4 ¥1.1 ¥0.6 ¥115.1 整体造价 ¥825.205 ¥13.22 ¥9.9 ¥848.325 2 船体部分 表3 船体部分成本一览 零件 描述 单位价格 数量 材料成本 工序成本 紧固件成本 总成本 PVC方管 自制,切割 ¥41.5 0.88m ¥36.52 ¥0.02 ¥0.4 ¥36.94 3D打印船头 自制,3D打印 ¥0.5 24m ¥12 ¥1.1 ¥0.4 ¥13.5 3D打印船尾

33、 自制,3D打印 ¥0.5 29m ¥14.5 ¥1.1 ¥0.4 ¥16 船体支撑架 自制, 方形不锈钢管焊接 ¥16 0.94m ¥15.04 ¥2.3 ¥0.5 ¥17.84 控制盒固定梁 自制,国标铝材 角磨机切割 ¥5.9 1.06m ¥6.25 ¥0.2 无 ¥6.45 船体挡水壳 自制,亚克力板激光切割 ¥25 0.8 ¥20 ¥2.8 ¥0.4 ¥23.2 合计 ¥104.3 ¥7.52 ¥2.1 ¥113.92 3 垃圾收集系统 表4 垃圾收集系统成

34、本一览 零件 描述 单位价格 数量 材料成本 工序成本 紧固件成本 总成本 垃圾收集箱 自制,裁剪,胶合 ¥5.5 0.96m2 ¥5.3 无 ¥0.4 ¥5.7 滚筒 自制,废旧玩具船再加工 ¥1 1 ¥1 无 ¥0.6 ¥1.6 毛刷 自制,废旧扫把再加工 ¥0.5 1 ¥1 无 ¥0.5 ¥1.5 滚筒支架 自制, 3D打印加工 ¥0.5 15.8m ¥7.9 ¥1.3 ¥0.6 ¥9.8 滚筒支撑梁 自制,铝材, 角磨机切割 ¥5.9 0.75m ¥4.425 ¥0.3

35、 0.4 ¥4.725 垃圾辅助收集板 自制,亚克力板激光切割 ¥25 0.2 ¥5 ¥0.6 无 ¥5.6 角度调节器 自制,切割 ¥5 1 ¥5 ¥0.8 无 ¥5.8 合计 ¥29.625 ¥3 ¥2.5 ¥25.125 4 控制系统 表5 控制系统成本一览 零件 描述 单位价格 数量 材料成本 工序成本 紧固件成本 总成本 主控制板 自制,锡焊焊接 ¥17.5 2 ¥35 ¥0.3 ¥0.4 ¥35.7 电机驱动 购买件 ¥5.3 2 1

36、0.6 无 ¥0.8 ¥11.4 杜邦线 购买件 ¥0.1 29 ¥2.9 无 无 ¥2.9 锂电池 购买 ¥230 1 ¥230 无 ¥1.4 ¥231.4 防水盒 自制,钻孔 ¥34.8 1 ¥34.8 ¥0.2 1.3 ¥36.3 稳压模块 购买 ¥7.5 3 ¥22 无 无 ¥22 电源线 购买 ¥28 0.01 ¥0.28 无 无 ¥0.28 电源开关 购买 ¥1.2 2 ¥2.4 无 无 ¥1.2 继电器 购买 ¥2.7 1 ¥2.7

37、无 无 ¥2.7 无线模块 购买 ¥11.5 1对 ¥11.5 无 无 ¥11.5 合计 ¥352.18 ¥0.5 ¥3.9 ¥356.18 5 动力系统 表6 动力系统成本一览 零件 描述 单位价格 数量 材料成本 工序成本 紧固件成本 总成本 螺旋桨推进器 购买 ¥223 1对 ¥223 无 ¥0.4 ¥223.4 螺旋桨固定架 自制,3D打印 ¥0.5 5.4m ¥2.7 ¥1.1 ¥0.4 ¥4.5 合计 ¥225.7 ¥1.1 ¥0.8 ¥

38、227.6 6 图传系统 表7 图传系统成本一览 零件 描述 单位价格 数量 材料成本 工序成本 紧固件成本 总成本 图传发射接收装置 购买 ¥110 1 ¥110 无 无 ¥110 摄像头固定盒 自制,3D打印 ¥0.5 6.8m ¥3.4 ¥1.1 ¥0.6 ¥5.1 合计 ¥113.4 ¥1.1 ¥0.6 ¥115.1 十五. 创新点说明,及如何有效防水 首先船体防水是一个非常重要的工作,一旦大量的水进入设计的机器中,会使机器下沉,吃水量变大。这是国内小型机器的一个大难点,尤其是船体不是

39、封闭的金属或者其他材料。很容易使水进入其中。破坏内部结构,造成严重后果。 我的设计思路是用发泡注入船体内部,填充双船体内部空余部分,由于发泡的质量很轻,水很难进入其中,这样无论船体向各个方向行进,都不会使水进入其中。在摄像头附近有挡水板,这样能有效防止滚筒扬起的水进入机构。 滚筒是一大创新点,它的作用有两个。1是将较大垃圾扫入收集箱中,避免了垃圾拥堵在船体端的尴尬局面。2是能有效防止垃圾的流出。当船体在后退时,由于水流的作用,垃圾很容易随水流流出。由于滚筒在不停的旋转,流出的垃圾在遇到滚筒时,会自动被回收到收集箱中。 引导板能使机器船收集效率变为原来的两到三倍,不仅是

40、增大了前进时的触水面积,而且能引导水流,提高了收集效率。 十六. 市场分析 十六.1 市场推广 该作品适用于景区小面积水域以及不适合现有大型垃圾收集船工作的水面(如小型水库、港区等)垃圾清理问题。可打捞大部分水面漂浮垃圾,如树叶、包装物等。基于无线电遥控技术,操控简单,机动性好,十分适用于公园或景区小面积水域内水面垃圾的清理工作。使用时只需由工作人员在岸上进行遥控,完成垃圾清理后再利用人工辅助回收即可,流动使用,方便快捷。从环保设备的市场来看,使用遥控控制,针对小水域漂浮垃圾清理的相关设备还是空缺。 水面垃圾收集机器人实现了人机分离的打捞模式,这种打捞模式随着技术的不断完善必将代替现

41、有的垃圾收集模式,还解决了现有的水上打捞设备正面临着奇缺的尴尬现状,具有巨大的市场潜力。随着水上环境的治理问题越发突出,对水上环境的治理力度必将不断增强,水上垃圾收集机器人以其实用性高,成本低廉,操作简单,安全可靠等一系列优点,实际地解决了垃圾收集的许多弊端,将有很大的发展潜力。 十六.2 盈利模式 此款水面垃圾清理机器人面临的主要客户将会是环保部门和景区管理部门,也可以直接为港口和水库提供特性化的设备和技术支持。可针对不同的工作面积和垃圾量,根据客户的要求定制不同尺寸的清理机器人,从而扩大营销范围,加大营销力度。 结束语 通过以上设计制作,证实了此款水面垃圾清理机器人是合理

42、可行的。采用稳定的双船体结构,整个船体轻盈灵活,无需浪费大量能源,且采用电力驱动,节约环保。选用32位微处理控制器 STM32F103C8T6作为主控芯片,通过串口进行单片机之间的通信,实现了人机交互。远程无线遥控控制,只需一位人员便可完成一系列工作,节约了劳动力、提高了效率,且安装有图传系统,保证了远距离情况下能够精准快速的将垃圾收集。通过这些特性可以看出,该机器人可以取代传统的人工打捞,是一款适合小型水面垃圾清理的实用型机器人。 参考文献: 1. 国际水中机器人比赛规则 2. 中国知网:遥控水面垃圾自动清理船,丁丽佳,2009 3. 江达飞,毛玉清主编,景区水面垃圾清理船设计, 2016 4. 朱龙根主编,机械设计,机械工业出版社,2006 5. 胡军志,小型多用途打捞装置的设计,2008 6. 唐术杰,王泽霖,遥控式水面垃圾自动清理器,2015

展开阅读全文
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

相关资源

更多
正为您匹配相似的精品文档
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!