新版高考数学文复习检测:第九章 算法初步、统计、统计案例 课时作业60 Word版含答案
《新版高考数学文复习检测:第九章 算法初步、统计、统计案例 课时作业60 Word版含答案》由会员分享,可在线阅读,更多相关《新版高考数学文复习检测:第九章 算法初步、统计、统计案例 课时作业60 Word版含答案(10页珍藏版)》请在装配图网上搜索。
1、 1
2、 1 课时作业60 用样本估计总体 一、选择题 1.容量为20的样本数据,分组后的频数如下表: 分组 [10,20) [20,30) [30,40) [40,50) [50,60) [60,70) 频数 2 3 4 5 4 2 则样本数据落在区间[10,40)的频率为( ) A.0.35 B.0.45 C.0.55 D.0.65 解析:
3、求得该频数为2+3+4=9,样本容量是20,所以频率为=0.45. 答案:B 2.重庆市各月的平均气温(℃)数据的茎叶图如图: 则这组数据的中位数是( ) A.19 B.20 C.21.5 D.23 解析:根据茎叶图可知,这组数据从小到大依次是8,9,12,15,18,20,20,23,23,28,31,32,处于正中间的两个数都是20,故中位数是20. 答案:B 3.如图是依据某城市年龄在20岁到45岁的居民上网情况调查而绘制的频率分布直方图,现已知年龄在[30,35)、[35,40)、[40,45]的网民人数成递减的等差数列,则年龄在[35,40)的网民出现的频率为(
4、 ) A.0.04 B.0.06 C.0.2 D.0.3 解析:由题意得,年龄在[20,25)的网民出现的频率为0.01×5=0.05,[25,30)的网民出现的频率为0.07×5=0.35,又[30,35)、[35,40)、[40,45]的网民人数成递减的等差数列,则其频率也成等差数列,又[30,35]的频率为1-0.05-0.35=0.6,则年龄在[35,40)的网民出现的频率为0.2. 答案:C 4.从甲、乙两个城市分别随机抽取16台自动售货机,对其销售额进行统计,统计数据用茎叶图表示(如图所示).设甲、乙两组数据的平均数分别为甲、乙,中位数分别为m甲,m乙,则( )
5、
A.甲<乙,m甲>m乙
B.甲<乙,m甲 6、乙的成绩的方差
D.甲的成绩的极差小于乙的成绩的极差
解析:由题意可知,甲的成绩为4,5,6,7,8,乙的成绩为5,5,5,6,9,所以甲、乙的成绩的平均数均为6,A错;甲、乙的成绩的中位数分别为6,5,B错;甲、乙的成绩的方差分别为×[(4-6)2+(5-6)2+(6-6)2+(7-6)2+(8-6)2]=2,×[(5-6)2+(5-6)2+(5-6)2+(6-6)2+(9-6)2]=,C对;甲、乙的成绩的极差均为4,D错.
答案:C
6.某公司10位员工的月工资(单位:元)为x1,x2,…,x10,其均值和方差分别为和s2,若从下月起每位员工的月工资增加100元,则这10位员工下月 7、工资的均值和方差分别为( )
A.,s2+1002 B.+100,s2+1002
C.,s2 D.+100,s2
解析:由题意,得=,
s2=[(x1-)2+(x2-)2+…+(x10-)2].
因为下月起每位员工的月工资增加100元,
所以下月工资的均值为
==+100
下月工资的方差为[(x1+100--100)2+(x2+100--100)2+…+(x10+100--100)2]=[(x1-)2+(x2-)2+…+(x10-)2]=s2,故选D.
答案:D
二、填空题
7.PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物,如图是 8、根据某地某日早7点至晚8点甲、乙两个监测点统计的数据(单位:毫克/立方米)列出的茎叶图,则甲、乙两地浓度的方差较小的是________.
解析:由茎叶图可知甲监测点的数据较为集中,乙监测点的数据较为分散,所以甲地的方差较小.
答案:甲
8.(20xx·南昌一模)在一次演讲比赛中,6位评委对一名选手打分的茎叶图如图所示,若去掉一个最高分和一个最低分,得到一组数据xi(1≤i≤4),在如图所示的程序框图中,是这4个数据的平均数,则输出的v的值为________.
解析:根据题意得到的数据为78,80,82,84,则=81.该程序框图的功能是求以上数据的方差,故输出的v的值为
9、=5.
答案:5
三、解答题
9.为检查某工厂所生产的8万台电风扇的质量,抽查了其中20台的无故障连续使用时限(单位:小时)如下:
248 256 232 243 188 268 278 266 289 312
274 296 288 302 295 228 287 217 329 283
(1)完成下面的频率分布表,并作出频率分布直方图;
(2)估计8万台电风扇中有多少台无故障连续使用时限不低于280小时;
(3)用组中值(同一组中的数据在该组区间的中点值)估计样本的平均无故障连续使用时限.
分组
频数
频率
频率/组距
[180,200)
[200, 10、220)
[220,240)
[240,260)
[260,280)
[280,300)
[300,320)
[320,340)
总计
0.05
解:(1)频率分布表及频率分布直方图如下所示:
分组
频数
频率
频率/组距
[180,200)
1
0.05
0.002 5
[200,220)
1
0.05
0.002 5
[220,240)
2
0.10
0.005 0
[240,260)
3
0.15
0.007 5
[260,280)
11、
4
0.20
0.010 0
[280,300)
6
0.30
0.015 0
[300,320)
2
0.10
0.005 0
[320,340)
1
0.05
0.002 5
总计
20
1.00
0.05
(2)由题意可得8×(0.30+0.10+0.05)=3.6,所以估计8万台电风扇中有3.6万台无故障连续使用时限不低于280小时.
(3)由频率分布直方图可知=190×0.05+210×0.05+230×0.10+250×0.15+270×0.20+290×0.30+310×0.10+330×0.05=269(小时),所以样本的平 12、均无故障连续使用时限为269小时.
10.(20xx·北京卷)某市居民用水拟实行阶梯水价.每人月用水量中不超过w立方米的部分按4元/立方米收费,超出w立方米的部分按10元/立方米收费.从该市随机调查了10 000位居民,获得了他们某月的用水量数据,整理得到如下频率分布直方图:
(Ⅰ)如果w为整数,那么根据此次调查,为使80%以上居民在该月的用水价格为4元/立方米,w至少定为多少?
(Ⅱ)假设同组中的每个数据用该组区间的右端点值代替.当w=3时,估计该市居民该月的人均水费.
解:(Ⅰ)由用水量的频率分布直方图知,该市居民该月用水量在区间[0.5,1],(1,1.5],(1.5,2], 13、(2,2.5],(2.5,3]内的频率依次为0.1,0.15,0.2,0.25,0.15.
所以该月用水量不超过3立方米的居民占85%,用水量不超过2立方米的居民占45%.
依题意,w至少定为3.
(Ⅱ)由用水量的频率分布直方图及题意,得居民该月用水费用的数据分组与频率分布表:
组号
1
2
3
4
分组
[2,4]
(4,6]
(6,8]
(8,10]
频率
0.1
0.15
0.2
0.25
组号
5
6
7
8
分组
(10,12]
(12,17]
(17,22]
(22,27]
频率
0.15
0.05
0.05
0.0 14、5
根据题意,该市居民该月的人均水费估计为:4×0.1+6×0.15+8×0.2+10×0.25+12×0.15+17×0.05+22×0.05+27×0.05=10.5(元).
1.如图是某位篮球运动员8场比赛得分的茎叶图,其中一个数据染上污渍用x代替,那么这位运动员这8场比赛的得分平均数不小于得分中位数的概率为( )
A. B.
C. D.
解析:由茎叶图可知0≤x≤9且x∈N,中位数是10+=,这位运动员这8场比赛的得分平均数为(7+8+7+9+x+3+1+10×4+20×2)=(x+115),由(x+115)≥,得3x≤7,即x=0,1,2,所以这位运动员这 15、8场比赛的得分平均数不小于得分中位数的概率为,故选B.
答案:B
2.农场种植的甲、乙两种水稻,在面积相等的两块稻田中连续6年的平均产量如下(单位:500 g),产量比较稳定的是( )
品种
第1年
第2年
第3年
第4年
第5年
第6年
甲
900
920
900
850
910
920
乙
890
960
950
850
860
890
A.甲 B.乙
C.一样 D.无法确定
解析:甲=×(900+920+900+850+910+920)=900,乙=×(890+960+950+850+860+890)=900;s=×(202+502 16、+102+202)≈567;s=×(102+602+502+502+402+102)≈1 733,因为s 17、+5×0.07+5×0.06+5×0.02)]=0.04.
(2)年龄在[25,35)内的频率为0.04×5+0.07×5=0.55,人数为0.55×800=440.
答案:(1)0.04 (2)440
4.某工厂对一批产品进行了抽样检测.如图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106],已知样本中产品净重小于100克的个数是36.
(1)求样本容量及样本中净重大于或等于98克并且小于104克的产品的个数;
(2)已知 18、这批产品中每个产品的利润y(单位:元)与产品净重x(单位:克)的关系式为y=求这批产品平均每个的利润.
解:(1)产品净重小于100克的频率为(0.050+0.100)×2=0.300.设样本容量为n.
∵样本中产品净重小于100克的个数是36,
∴=0.300,∴n=120.
∵样本中净重大于或等于98克并且小于104克的产品的频率为(0.100+0.150+0.125)×2=0.750,
∴样本中净重大于或等于98克并且小于104克的产品的个数是120×0.750=90.
(2)产品净重在[96,98),[98,104),[104,106]内的频率分别为0.050×2=0.100,(0.100+0.150+0.125)×2=0.750,0.075×2=0.150,∴其相应的频数分别为120×0.1=12,120×0.75=90,120×0.150=18,∴这批产品平均每个的利润为×(3×12+5×90+4×18)=4.65(元).
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。