高考数学总复习 第四章 三角函数、解三角形 高考大题专项突破2 高考中的三角函数与解三角形课件 理 新人教A版
![高考数学总复习 第四章 三角函数、解三角形 高考大题专项突破2 高考中的三角函数与解三角形课件 理 新人教A版_第1页](https://file3.zhuangpeitu.com/fileroot3/2021-11/30/b1b8f99b-72bd-4afa-ab75-ddc25c2ebd0b/b1b8f99b-72bd-4afa-ab75-ddc25c2ebd0b1.gif)
![高考数学总复习 第四章 三角函数、解三角形 高考大题专项突破2 高考中的三角函数与解三角形课件 理 新人教A版_第2页](/images/s.gif)
![高考数学总复习 第四章 三角函数、解三角形 高考大题专项突破2 高考中的三角函数与解三角形课件 理 新人教A版_第3页](/images/s.gif)
《高考数学总复习 第四章 三角函数、解三角形 高考大题专项突破2 高考中的三角函数与解三角形课件 理 新人教A版》由会员分享,可在线阅读,更多相关《高考数学总复习 第四章 三角函数、解三角形 高考大题专项突破2 高考中的三角函数与解三角形课件 理 新人教A版(21页珍藏版)》请在装配图网上搜索。
1、考情概览备考定向高考大题专项突破二高考中的三角函数与解三角形考情概览备考定向必备知识预案自诊关键能力学案突破-2-2-2-2-从近五年的高考试题来看,高考对三角函数与解三角形的考查呈现出较强的规律性,每年的题量和分值要么三个小题15分,要么一个小题一个大题17分.在三个小题中,分别考查三角函数的图象与性质、三角变换、解三角形;在一个小题一个大题中,小题要么考查三角函数的图象与性质,要么考查三角变换,大题考查的都是解三角形.考情概览备考定向必备知识预案自诊关键能力学案突破-3-3-3-3-题型一题型二题型一正弦定理、余弦定理与三角形面积的综合问题例1已知a,b,c分别为ABC的三个内角A,B,C
2、的对边,a=2,且(2+b)(sin A-sin B)=(c-b)sin C.(1)求角A的大小;(2)求ABC的面积的最大值. 答案 答案关闭考情概览备考定向必备知识预案自诊关键能力学案突破-4-4-4-4-题型一题型二解题心得解题心得正弦定理和余弦定理是解三角形时用到的两个重要定理,其作用主要是将已知条件中的边角关系转化为纯边或纯角的关系,使问题得以解决.考情概览备考定向必备知识预案自诊关键能力学案突破-5-5-5-5-题型一题型二对点训练对点训练1在ABC中,a,b,c分别是角A,B,C的对边,已知3(b2+c2)=3a2+2bc.考情概览备考定向必备知识预案自诊关键能力学案突破-6-6
3、-6-6-题型一题型二考情概览备考定向必备知识预案自诊关键能力学案突破-7-7-7-7-题型一题型二考情概览备考定向必备知识预案自诊关键能力学案突破-8-8-8-8-题型一题型二例2已知在ABC中,D是BC上的点,AD平分BAC,ABD的面积是ADC面积的2倍.考情概览备考定向必备知识预案自诊关键能力学案突破-9-9-9-9-题型一题型二在ABD和ADC中,由余弦定理知AB2=AD2+BD2-2ADBDcosADB,AC2=AD2+DC2-2ADDCcosADC.故AB2+2AC2=3AD2+BD2+2DC2=6.由(1)知AB=2AC,所以AC=1.考情概览备考定向必备知识预案自诊关键能力学
4、案突破-10-10-10-10-题型一题型二解题心得解题心得对于在四边形中解三角形的问题或把一个三角形分为两个三角形来解三角形的问题,分别在两个三角形中列出方程,组成方程组,通过加减消元或者代入消元,求出所需要的量;对于含有三角形中的多个量的已知等式,化简求不出结果,需要依据题意应用正弦定理、余弦定理再列出一个等式,由此组成方程组通过消元法求解.考情概览备考定向必备知识预案自诊关键能力学案突破-11-11-11-11-题型一题型二对点训练对点训练2(2017江苏无锡一模,15)在ABC中,a,b,c分别为角A,B,C的对边.若acos B=3,bcos A=1,且A-B= .(1)求c的值;(
5、2)求角B的大小.化为b2+c2-a2=2c.解由组成的方程组得2c2=8c,即c=4.考情概览备考定向必备知识预案自诊关键能力学案突破-12-12-12-12-题型一题型二考情概览备考定向必备知识预案自诊关键能力学案突破-13-13-13-13-题型一题型二考情概览备考定向必备知识预案自诊关键能力学案突破-14-14-14-14-题型一题型二题型二正弦定理、余弦定理与三角变换的综合例3(2017天津,理15)在ABC中,内角A,B,C所对的边分别为a,b,c,已知ab,a=5,c=6,sin B= .(1)求b和sin A的值;考情概览备考定向必备知识预案自诊关键能力学案突破-15-15-1
6、5-15-题型一题型二考情概览备考定向必备知识预案自诊关键能力学案突破-16-16-16-16-题型一题型二考情概览备考定向必备知识预案自诊关键能力学案突破-17-17-17-17-题型一题型二解题心得解题心得三角形有三条边三个角共六个元素,知道其中三个(其中至少知道一个边)可求另外三个;若题目要求的量是含三角形内角及常数的某种三角函数值,在解题时往往先通过正弦、余弦求出内角的三角函数值再应用和角公式及倍角公式通过三角变换求得结果.考情概览备考定向必备知识预案自诊关键能力学案突破-18-18-18-18-题型一题型二对点训练对点训练3在ABC中,角A,B,C所对的边分别为a,b,c,满足(1)
7、求角B的大小;(2)若AC=7,AD=5,DC=3,求AB的长.考情概览备考定向必备知识预案自诊关键能力学案突破-19-19-19-19-题型一题型二考情概览备考定向必备知识预案自诊关键能力学案突破-20-20-20-20-题型一题型二1.在历年的高考试题中,三角中的解答题一般考查简单三角函数式的恒等变形、解三角形,有时也考查正弦定理、余弦定理的实际应用.特别是涉及解三角形的问题,经常出现的题型有:正弦定理、余弦定理与三角变换的综合;正弦定理、余弦定理与三角形面积的综合;正弦定理、余弦定理与三角变换及三角形面积的综合.把握住高考命题规律,有针对性的训练是提高成绩的有效措施.考情概览备考定向必备知识预案自诊关键能力学案突破-21-21-21-21-题型一题型二2.三角恒等变换和解三角形的结合,一般有两种类型:一是先利用三角函数的平方关系、和角公式等求符合正弦定理、余弦定理中的边与角,再利用正弦定理、余弦定理求值;二是先利用正弦定理、余弦定理确定三角形的边与角,再代入到三角恒等变换中求值.具体解题步骤如下:第一步利用正(余)弦定理进行边角转化;第二步利用三角恒等变换求边与角;第三步代入数据求值;第四步查看关键点,易错点.3.解三角形的问题总体思路就是转化的思想和消元的方法,要注重正弦定理、余弦定理多种表达形式及公式的灵活应用.
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 个人所得税专项附加扣除子女教育费用协议范本.docx
- 2025年策划产品独家运营协议书.docx
- 2025年全球劳动力服务协议.docx
- 2025年旧货交易策划协议样本.docx
- 2025年建筑节能改造项目策划与技术咨询委托协议.docx
- 2025年协同作业协议书电子版.docx
- 2025年劳动合同争议法律援助协议.docx
- 2025年煤炭矿资源开发策划合作协议书.docx
- 2025年共同资产分配策划协议.docx
- 2025年联盟知识产权共享协议.docx
- 2025年水利设施改造项目施工安全与责任分担协议.docx
- 2025年度学校绿化养护策划与管理合作协议.docx
- 2025年物业策划服务内部合作框架协议.docx
- 2025年新入职员工劳务合同协议书.docx
- 权益纠纷解决协议书.docx