汽车变速箱三维设计与仿真【三维PROE+仿真动画】【三轴式五挡手动变速器 五档】
汽车变速箱三维设计与仿真【三维PROE+仿真动画】【三轴式五挡手动变速器 五档】,三维PROE+仿真动画,三轴式五挡手动变速器 五档,汽车变速箱三维设计与仿真【三维PROE+仿真动画】【三轴式五挡手动变速器,五档】,汽车,变速箱,三维设计,仿真,三维,PROE,动画,三轴式五挡,手动
毕业设计-翻译文
三段式圆弧凸轮的解析设计(译)
摘要:
本文对三段式圆弧凸轮轮廓进行了理论性描述。提出了凸轮轮廓的解析式并为以之为尺寸参数讨论。例举了一些数值样例来证明本理论描述的正确性并表明恰当的三段式圆弧凸轮在工程上是可行的。
1. 序言
凸轮是一种通过与从动件的直接表面接触来传输预定运动的机构。
一般地,从运动学[1,2]:来看,凸轮机构由三部分组成:凸轮(主动件);从动件;机架。凸轮机构广泛用于现代机械中,特别是一些自动化机械装备,内燃机与控制系统[3]。
凸轮机构简单而便宜,运动部件少而且结构紧凑。
凸轮轮廓设计主要基于简单的几何曲线,比如:抛物线,谐函数曲线,摆线,梯形曲线[2,5]以及它们的复合曲线[1,2,6,7]。
本文主要致力于基于圆弧轮廓的凸轮,即所谓圆弧凸轮。
圆弧凸轮制造容易,用于低速机构中,也可用于微机械与纳米机械中,因为精密加工可以通过利用初等几何学准确地达到。
这种凸轮的缺点是:凸轮轮廓上不同半径圆弧交接处会产生加速度的剧变。[5]
因为通常只有有限数量的圆弧,所以其设计,制造以及运动传输都不是很复杂,从而它成为经济与简单的方案,这正是圆弧凸轮[5,8]的优点[8]所在。
最近,出于设计目的,有人开始用描述性视图给予圆弧凸轮注意。
本文通过讨论其几何设计参量描述了三段式圆弧凸轮。我们为三弧凸轮提出了解析式作为对以前文献[12]中二弧凸轮解析式的扩充。
2. 三段式圆弧凸轮的解析模型
三段式圆弧凸轮解析式中设计参量由图1[8],图2给出。
三段式圆弧凸轮设计重要参量:图1:推程运动角,休止角,回程运动角,动程角,最大举升位移。
图1:普通三弧凸轮设计参量
图2:三弧凸轮特征轨迹
三段式圆弧凸轮特征轨迹如图2所示:由凸轮上半径ρ1 轮廓形成的第一圆Г1,以及圆心 C1;由凸轮上半径ρ2 轮廓形成的第二圆Г2,以及圆心 C2;由凸轮上半径ρ3 轮廓形成的第三圆Г3,以及圆心 C3;由凸轮上半径r轮廓形成的基圆Г4,以及圆心 O;由凸轮上半径(r+h1)形成的举升圆Г5,以及圆心 O;半径的滚子圆,圆心定于从动件轴上。另外,重要的点有:D (,),C1和C5交汇点; F (,) ,C1 和C3交汇点; G (,),C3 和C2交汇点;A (,),C2和C4交汇点。x 和 y 是与机架OXY坐标系相关的笛卡尔坐标,机架原点就是凸轮转轴。其他重要轨迹: t13 ,C1 和C3的公切线;t15 ,C1 和 C5的公切线;t23, C2 和 C3的公切线;t24 ,C2 和C4的公切线。
由图1与图2可以得出式子,这对于表现并设计三段式圆弧凸轮很有用处。当这些圆被以恰当的形式表达时,解析描述即可得出:
•半径满足的圆 C1通过F点时满足:
(1)
•半径满足的圆 C2通过A点时满足:
(2)
•半径满足的圆 C3通过G点时满足:
(3)
•半径满足的圆 C4通过F点时满足:
(4)
•半径满足的圆 C5通过G点时满足:
(5)
•半径r 的圆 C4满足
(6)
•半径的圆 C5 满足
(7)
其他特殊情况可以表示如下:
• 圆 C1 与圆 C5在D点有公切线满足:
• 基圆 C4 与圆 C2在D点有公切线满足:
• 圆 C2 与圆 C3在D点有公切线满足:
• 圆 C1 与圆 C2在D点有公切线满足:
由式(1)–(11) 可以得到关于三段式圆弧凸轮的描述并可用于画出图2所示的设计。
3.解析设计过程
由式(1)–(11) 可以推出一系列等式,当C1, C2, C3, F 和 G被赋予合适的值时 ,相关坐标即可得出。
这样就可以根据所举解析描述来区分4个不同的设计情况。
第一种情况我们假设参数以及A,C1,C2, D和G的坐标已知,而点C3, F 坐标未知。当运动角 时,A点横坐标为0 。由于A点是圆C2和C4的交汇点,故C2圆心处于Y轴上,从而C2圆心横坐标也为0。由等式(1)–(11) 可得关于C3 和 F坐标的一系列方程。解析程式表示如下:
• 通过点F和D的圆 C1表达式:
• 通过点F和G的圆 C3表达式:
•圆C1和圆C3在F点公切线表达式:
•圆C2和圆C3在G点公切线表达式:
若,则等式(12)–(15) 可表示为:
(16)
若圆心 C2 未知圆心C1位于直线OD上,我们参考图2得到第二个问题:即参量 以及点 C2, A, D 和G坐标均已知,而点C1, F 和 C3 未知。并再设,而且由上已知,与式(9)联立可以得到另外2方程:
• 通过点G和A的圆 C2表达式:
• 通过点O和A的圆心 C2的直线的表达式:
由等式(17),(18)可解决第2种情况。
若圆心C1 处于直线OD上某处,这便是第3种情况:即参量 以及A, D 和G点坐标已知。点 C1, C2, F 和 C3 未知。。并再设,而且由上已知,与式(16)–(18)联立可以得到另外2方程:
• 过点D的圆C1满足方程:
(19)
• 过点 O, D 和 C1 三点直线满足:
最后我们得到第4种情况:即当, ,并且 。图1中角 间于点 A 与 Y 轴。 参量以及点A, D 和 G 坐标已知,点 C1, C2, C3 和 F 未知。方程组(16)第4式可表示为:
(21)
综上,三段式圆弧凸轮的一般设计可由式 (12)–(14)与(17)–(21) 得到解决。一般的设计过程中的参量计算常可由上面的模式得到。这一模式在运用MAPLE解决未知设计量时优势更是明显。
4.数字样例
一些数字样例的计算有力地证明了上文模式的正确性与高效率。只有一个方法可以代表固定程式的圆弧凸轮设计。
以图3中例1作为设计样例1。数据如下:
图三显示了由等式(16)得出的设计结果。特别的,图3(a)显示的是解析式第一种解决方式的结果:应注意到,对应于凸轮轮廓第一,第二圆弧,点 F, C1 和 C3 按 F, C1 和 C3 的顺序排列,而点 G, C3 和 C2 按 G, C3 和 C2 的顺序排列。图3(b)显示了解析式第二种解决方式的结果。凸轮轮廓无法辨别,点F也不在圆上。重要点F, C1 和 C3 按图3(a)相同顺序排列;而点 G, C2 和 C3 是按照 C2, G 和 C3 的顺序排列这与图3(a)不同,并且也没有给出凸轮轮廓。图3(c)显示了解析式第三种解决方式,类似于图 3(b)。图 3(d) 显示了解析式第三种解决方式。我们注意到D点对应一尖点,另外点 F 和 G与圆心 C3 靠得很近,所以正如图3(d)所示,该处曲率变化特别大。故仅有图3(a)的方案是切实可行的。各点次序应为 F, C1 ,C3 和 G, C3 , C2 相应点。
图3--例1与例2:方程(16)与方程(16)–(18)设计方案的图示仅(a) 为可行方案。
图 3(a)方案由以下值确定:
图3例2,数据如下:
其中图 3 表示的也是由方程(16)–(18)得到的第2方案。可行数字方案取值如下
在图4例3中,由设计情况3,数据给定如下:
图4展示了由方程 (16)–(20)得到的方案。图4(a)展示的是第一方案结果,类似于图3(d),图4(b) 展示了解析式第二种解决方案。我们注意到点 F 位于点 D 下方,故点 F, C1 , C3 不可排列。 图4(c)展示的于图3(a)一样,也是解析式的第3方案。
图4例3: 方程组(16)–(20)方案的图形展示。仅图(c)方案 可行
从而仅有图4(c)方案可行。可行数字方案由以下值限定:
在图5例4中,由第四设计方案,可将数据给定如下:
图5展示了由方程组 (16)–(21)得到的方案。图5(a)展示了第一方案。类似于图4(a), 但是点C1方位有异。 点 F, C1 和 C3 以 C3, F 和 C1 的顺序排列。图5(b) 展示了解析式第二方案,类似于图4(a)。图5(c)展示了解析式第三方案,类似于图4(c)。
图5例4:方程组(16)–(21)所得方案图示.仅方案(c) 可行
从而可得可行方案为图5(c)中方案。可行数字方案之赋值:
5. 应用
本文旨在提出凸轮轮廓近似设计新的设计途径并满足其制造需求。
由设计解析式可以获得高效率的设计运算法则。紧凑的解析式更可以在凸轮的分析过程及其综合特性的实现中发挥作用。由圆弧组成的近似轮廓,在取得任何含近似圆弧轮廓的动力学特性的分析表达式具有特殊的重要性。
的确,由于在小型及微型机械中的应用,圆弧形凸轮轮廓已经具有了相当的重要性。事实上,当构造设计已经提升到毫微米级别的时候,多项式曲线轮廓的凸轮的制造变得相当困难,要想校验更如登天。因此,设计便利的圆弧轮廓凸轮成为首选,而其实验性测试也是方便。
另外,对低成本自动化与日俱增的需求,也赋予这些仅适于特殊用途的近似设计新的重要性。圆弧凸轮轮廓方案可以方便地用于低速或低精度机械中。
6. 综述
本文提出了有关三段式圆弧凸轮轮廓基本设计的解析方法。从该法我们推导出了1个设计算法,从而可以高效地解决该方向一些设计问题。另外还举出了一些数字样例以展示与讨论三段式圆弧凸轮的多重设计以及工程可行性问题。
7.参考文献
[1] F.Y. Chen, Mechanics and Design of Cam Mechanisms, Pergamon Press, New York, 1982.
[2] J. Angeles, C.S. Lopez-Cajun, Optimization of Cam Mechanisms, Kluwer Academic Publishers, Dordrecht, p.
1991.
[3] R. Norton, Cam and cams follower (Chapter 7), in: G.A. Erdman (Ed.), Modern Kinematics: Developments in the
Last Forty Years, Wiley-Interscience, New York, 1993.
[4] F.Y. Chen, A survey of the state of the art of cam system dynamics, Mechanism and Machine Theory 12(1977)
201–224.
[5] G. Scotto Lavina, in: Sistema (Ed.), Applicazioni di Meccanica Applicata alle Macchine, Roma, 1971.
[6] H.A. Rothbar, Cams Design, Dynamics and Accuracy, Wiley, New York, 1956.
[7] J.E. Shigley, J.J. Uicker, Theory of Machine and Mechanisms, McGraw-Hill, New York, 1981.
[8] P.L. Magnani, G. Ruggieri, Meccanismi per Macchine Automatiche, UTET, Torino, 1986.
[9] N.P. Chironis, Mechanisms and Mechanical Devices Sourcebook, McGraw-Hill, New York, 1991.
[10] V.F. Krasnikov, Dynamics of cam mechanisms with cams countered by segments of circles, in: Proceedings of the
International Conference on Mechanical Transmissions and Mechanisms, Tainjin, 1997, pp. 237–238.
[11] J. Oderfeld, A. Pogorzelski, On designing plane cam mechanisms, in: Proceedings of the Eighth World Congress on
the Theory of Machines and Mechanisms, Prague, vol. 3, 1991, pp. 703–705.
[12] C. Lanni, M. Ceccarelli, J.C.M. Carvhalo, An analytical design for two circular-arc cams, in: Proceedings of the
Fourth Iberoamerican Congress on Mechanical Engineering, Santiago de Chile, vol. 2, 1999.
924 C. Lanni et al. / Mechanism and Machine Theory 37 (2002) 915–924
9
收藏