2018年秋八年级数学上册 第13章 全等三角形 专题训练(三)全等三角形的基本模型练习 (新版)华东师大版
《2018年秋八年级数学上册 第13章 全等三角形 专题训练(三)全等三角形的基本模型练习 (新版)华东师大版》由会员分享,可在线阅读,更多相关《2018年秋八年级数学上册 第13章 全等三角形 专题训练(三)全等三角形的基本模型练习 (新版)华东师大版(12页珍藏版)》请在装配图网上搜索。
1、 专题训练(三) 全等三角形的基本模型 ► 模型一 平移模型 常见的平移模型: 图3-ZT-1 1.如图3-ZT-2,点B在线段AD上,BC∥DE,AB=ED,BC=DB.求证:∠A=∠E. 图3-ZT-2 2.如图3-ZT-3,点A,B,C,D在同一条直线上,AB=CD,AE∥BF,CE∥DF.求证:AE=BF. 图3-ZT-3 ► 模型二 轴对称模型 常见的轴对称模型: 图3-ZT-4 3.如图3-ZT-5,∠B=∠D,请添加一个条件(不得添加辅助线),使得△ABC≌△ADC,并说明理由.
2、 图3-ZT-5 4.如图3-ZT-6,BD⊥AC于点D,CE⊥AB于点E,AD=AE.求证:BE=CD. 图3-ZT-6 5.如图3-ZT-7,A,C,D,B四点共线,且AC=BD,∠A=∠B,∠ADE=∠BCF.求证:DE=CF. 图3-ZT-7 6.如图3-ZT-8,BE⊥AC,CD⊥AB,垂足分别为E,D,BE=CD.求证:AB=AC. 图3-ZT-8 ► 模型三 旋转模型 常见的旋转模型: 图3-ZT-9 7.如图3-ZT-10,已知
3、AB=AC,AB⊥AC,AD⊥AE,且∠ABD=∠ACE.求证:AD=AE. 图3-ZT-10 ► 模型四 一线三等角模型 图3-ZT-11 8.如图3-ZT-12,B,C,E三点在同一条直线上,AC∥DE,AC=CE,∠ACD=∠B. (1)求证:BC=DE; (2)若∠A=40°,求∠BCD的度数. 图3-ZT-12 ► 模型五 综合模型 平移+对称模型: 平移+旋转模型: 图3-ZT-13 图3-ZT-14 9.如图3-ZT-15,点B,F,C,E在同一条直线上,FB=CE,
4、AB∥ED,AC∥FD,求证:AC=DF. 图3-ZT-15 10.如图3-ZT-16,AB=BC,BD=CE,AB⊥BC,CE⊥BC.求证:AD⊥BE. 图3-ZT-16 详解详析 1.证明:∵BC∥DE, ∴∠ABC=∠D. 在△ABC和△EDB中, ∵AB=DE,∠ABC=∠D,BC=DB, ∴△ABC≌△EDB(S.A.S.), ∴∠A=∠E. 2.证明:∵AE∥BF,∴∠A=∠FBD. ∵CE∥DF,∴∠D=∠ACE. ∵AB=CD,∴AB+BC=CD+BC, 即AC=BD. 在△ACE和△BDF中, ∵∠A=∠FB
5、D,AC=BD,∠D=∠ACE, ∴△ACE≌△ABDF(A.S.A.), ∴AE=BF. 3.解:答案不唯一,如添加∠BAC=∠DAC. 理由:在△ABC和△ADC, ∵∠B=∠D,∠BAC=∠DAC,AC=AC, ∴△ABC≌△ADC(A.A.S.). 4.证明:∵BD⊥AC,CE⊥AB, ∴∠ADB=∠AEC=90°. 在△ADB和△AEC中, ∵∠ADB=∠AEC,AD=AE,∠A=∠A, ∴△ADB≌△AEC(A.S.A.), ∴AB=AC. 又AD=AE, ∴AB-AE=AC-AD, 即BE=CD. 5.证明:∵AC=BD, ∴AC+CD=BD+C
6、D, 即AD=BC. 在△AED和△BFC中, ∵∠A=∠B, AD=BC, ∠ADE=∠BCF, ∴△AED≌△BFC(A.S.A.), ∴DE=CF. 6.证明:∵BE⊥AC,CD⊥AB, ∴∠BEA=∠CDA=90°. 又∵∠A=∠A,BE=CD, ∴△ABE≌△ACD, ∴AB=AC. 7.证明:∵AB⊥AC,AD⊥AE, ∴∠BAC=∠DAE=90°. ∴∠BAC-∠DAC=∠DAE-∠DAC, 即∠BAD=∠CAE. 在△ABD和△ACE中, ∵∠BAD=∠CAE,AB=AC,∠ABD=∠ACE, ∴△ABD≌△ACE,∴AD=AE. 8.解
7、:(1)证明:∵AC∥DE, ∴∠ACB=∠E,∠ACD=∠D. ∵∠ACD=∠B, ∴∠D=∠B. 在△ABC和△CDE中, ∵∠ACB=∠E,∠B=∠D,AC=CE, ∴△ABC≌△CDE(A.A.S.), ∴BC=DE. (2)∵△ABC≌△CDE, ∴∠A=∠DCE=40°, ∴∠BCD=180°-40°=140°. 9.证明:∵FB=CE, ∴FB+FC=CE+FC,∴BC=EF. ∵AB∥ED,AC∥FD, ∴∠B=∠E,∠ACB=∠DFE. 在△ABC和△DEF中, ∵∠B=∠E,BC=EF,∠ACB=∠DFE, ∴△ABC≌△DEF(A.S.A.), ∴AC=DF. 10.证明:设 AD,BE交于点F. ∵AB⊥BC,CE⊥BC,∴∠ABD=∠C=90°. 在△ABD和△BCE中, ∵AB=BC,∠ABD=∠C,BD=CE, ∴△ABD≌△BCE, ∴∠A=∠CBE. ∵∠CBE+∠ABE=90°, ∴∠A+∠ABE=90°, 则∠AFB=90°, ∴AD⊥BE. 12
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。