连杆加工工艺设计【斜螺栓孔】【纯工艺】【中心距210】【含cad图纸+文档全套资料】
喜欢就充值下载吧。。资源目录里展示的文件全都有,,请放心下载,,有疑问咨询QQ:414951605或者1304139763 ======================== 喜欢就充值下载吧。。资源目录里展示的文件全都有,,请放心下载,,有疑问咨询QQ:414951605或者1304139763 ========================
机械原理
基于局部平均分解的阶次跟踪分析及其在齿轮故障诊断中的应用
Junsheng Cheng, Kang Zhang, Yu Yang
关键词:
阶次跟踪分析 局部平均分解 解调 齿轮 故障诊断
摘要:
局部平均分解(LMD)是一种新的自适应时频分析方法,这种方法特别适合处理多分量的调幅信号和调频(AM-FM)信号。通过使用LMD方法,可以将任何复杂的信号分解为一系列的产品功能PF分量(PFs),每个PF分量都是纯调频信号和包络信号的乘积,且通过纯调频信号可以获得具有物理意义的瞬时频率。从理论上讲,每个PF分量都是一个单分量的AM-FM信号。 因此,可以将LMD的过程看作是信号解调的过程。齿轮发生故障时,振动信号呈现明显的AM-FM特征。因此,针对齿轮升降速过程中故障振动信号为多分量的调制信号,以及故障特征频率随转速变化的特点,提出了一种基于LMD和阶次跟踪分析的齿轮故障诊断方法。齿轮箱的故障诊断实验表明本文提出的方法能有效地提出齿轮故障诊断特征。
1 引言
齿轮传动是机械设备中常见的传动方式, 故对齿轮进行故障诊断具有重要意义。
齿轮故障诊断的关键一步是故障特征的提取。一方面,传统的齿轮故障诊断方法的重点在一个固定的旋转速度检测振动信号的频谱分析。 而齿轮作为一种旋转部件, 其升降速过程的振动信号往往包含了丰富的状态信息, 一些在平稳运行时不易反映的故障特征在升降速过程中可能会充分地表现出来[1],此外,来自齿轮振动信号的暂态过程中,速度依赖性总是显示非平稳特征。如果频谱分析直接应用于非平稳振动信号,混频将不可避免的发生,这将对故障特征提取带来不良影响。在以往的研究中,为了跟踪技术,通常利用振动信号中添加旋转机械轴转速信息,已经成为一个在旋转机械故障诊断[2,3]的重要途径。从本质上讲,阶次跟踪分析技术可以在时域非平稳信号转换成角域静止,可以突出的旋转速度相关的振动信息和抑制无关的信息。因此,阶次跟踪分析是在助跑过程中齿轮的故障特征提取和运行了一个可取的方法
另一方面,当发生故障的齿轮振动信号,拿起在运行和运行过程中始终存在的振幅特性调制和频率调制(AM–FM)。为了提取齿轮故障振动信号的调制特征,解调分析是最流行的方法之一[ 4,5 ]。然而,传统的解调方法,如希尔伯特变换解调和传统包络分析有其自身的局限性[ 6 ]。这些缺点包括两个方面:(1)在实践中大多数的齿轮故障振动信号都是多组分是–调频信号。这些信号,在传统的解调方法,他们通常是通过带通滤波器分解成单组分是–调频信号的解调,然后提取的频率和振幅信息。然而,这两个数载波频率的载波频率成分和幅值都难以在实践中被确定,所以带通滤波器的中心频率的选择具有主体性,将解调误差和使它提取机械故障振动信号的特征是无效的;(2)由于希尔伯特不可避免的窗口效应变换,当使用希尔伯特变换提取调制信息,目前的非瞬时响应特性,即,在调制信号被解调以及打破中间部分的两端会再次产生调制,使振幅指数衰减的方式得到的波动,然后解调误差将增加[ 7 ]。为了克服第一个缺点,一个合适的分解方法应寻找独立的多分量信号为多个单组分是–调频信号的包络分析之前。由于EMD(经验模态分解)自适应复杂多分量信号分解为一系列固有模态函数(IMF)的瞬时频率的物理意义[ 8,9 ],基于EMD的阶比跟踪方法已广泛应用于齿轮故障诊断[ 13 ]。然而,仍然存在许多不足之处[ 14 ],如在EMD的端点效应和模态混 [ 15 ],仍在进行。此外,对原信号通过EMD分解,产生了由希尔伯特变换(上面提到的)缺点是不可避免的在IMF进行希尔伯特变换的包络分析。此外,有时无法解释的负瞬态频率时会出现瞬时频率计算每个IMF进行希尔伯特变换[ 16 ]
局部均值分解(LMD)是一种新型的解调分析方法,特别适合于处理多组分的幅度调制和频率调制(AM–调频)信号[ 16 ]。用LMD,任何复杂的信号可以分解成许多产品功能(PFS),每一种产品的包络线信号(获得直接由分解)的PF瞬时振幅可以得到一个纯粹的频率调制信号从一个良好定义的瞬时频率可以计算。在本质上,每个PF正是一种单组分我–调频信号。因此,LMD的程序可以,事实上,作为解调过程。调制信息可以通过频谱分析的瞬时振幅(包络信号,直接获得通过分解)每个PF分量进行希尔伯特变换,而不是由PF分量。因此,当LMD和EMD方法分别应用到解调分析,与EMD,LMD的突出优点是避免希尔伯特变换。此外,LMD迭代过程中所采用的手段和当地的幅度不平滑的地方用EMD的三次样条的方法,这可能带来的包络的误差和影响的精度瞬时频率和振幅。此外,与EMD端点效应相比并不明显,因为在LMD方法更快的速度和算法的迭代次数更少[ 17 ]。
基于以上分析,阶次跟踪和解调技术,LMD最近的发展,科学相结合,并应用于齿轮故障诊断过程中各轴速度。首先,订单跟踪技术被用于将从时间域的齿轮振动信号角域。其次,分解角域重采样信号的PF系列LMD,因此组件和相应的瞬时振幅和瞬时频率可以得到的。最后,进行频谱分析的故障信息含有显性PF分量的瞬时幅值。从实验的振动信号,表明该方法能有效地提取故障特征和分类准确齿轮工作状态的分析结果。
本文的组织如下。第2节是一个给定的LMD方法理论。在第3节中的齿轮故障诊断方法中,以技术和LMD跟踪相结合的提出和实践应用表明,提出的方法。此外,LMD和基于EMD的比较也在第3节提到了基础的方法。最后,我们得出了第4部分的结论。
2 LMD 方法
LMD方法的本质是通过迭代从原始信号中分离出纯调频信号和包络信号,然后将纯调频信号和包络信号相乘便可以得到一个瞬时频率具有物理意义的PF分量,循环处理直至所有的PF分量分离出来对任意信号x(t),其分解过程如[16]:
( 1) 确定原始信号第i个局部极值及其对应的时刻,计算相邻两个局部极值和的平均值
(1)
将所有平均值点mi在其对应的时间段[,]内伸一线段,然后用滑动平均法进行0平滑处理,得到局均值m11(t) 。
( 2) 采用局部极值点计算局部幅值 :
=| -|/2 (2)
将所有局部幅值点ai在其对应的时间段[,]内伸成一条线段,然后采用滑动平均法进行平滑处理,得到包估计函数a11(t) 。
( 3) 将局部均值函数m11(t)从原始信号x(t)中分离来, 即去掉一个低频成分,得到
h11(t)=x(t)-m11(t) (3)
( 4)用h11(t)除以包络估计函数A11( t)以对h11(t)进行解调,得到
s11(t)=h11(t)/A11(t) (4)
对s11( t)重复上述步骤便能得到s11(t)的包络估计函数A12(t),若A12(t)不等于1,则s11( t)不是一个纯调频信号需要重复上述迭代过程n次,直至s1n(t)为一个纯调频信号,即 s1n(t)的包络估计函数 A1(n+1)(t)=1,所以,有
(5)
(6)
为理论上, 迭代终止的条件
(7)
在实践中,一种变体δ会提前确定。如果1−δ≤a1(n + 1)(t)≤1 +δand−1≤s1n(t)≤1,然后迭代过程将停止
( 5) 把迭代过程中产生的所有包络估计函数相乘便可以得到包络信号( 瞬时幅值函数) :
(8)
( 6) 将包络信号A1(t)和纯调频信号s1n(t)相乘便可以得到原始信号的第一个PF分量:
PF1(t)=a1(t)s1n(t) ( 9)
PF1(t)包含了原始信号中频率值最高的成分,是一个单分量的调幅-调频信号,PF1(t)的瞬时幅值就是包络信号A1(t),PF1(t)的瞬时频率f1(t)则可由纯调频信号s1n(t)求出,即:
(10)
( 7)将第一个PF分量PF1(t)从原始信号x(t)中分离出来, 得到一个新的信号u1(t),将u1( t)作为原始数据重复以上步骤,循环k次,直到 uk为一个单调函数为止,即:
(11)
原始信号x(t)能够被所有的PF分量和uk重构,即:
(12)
产品功能p的数量在哪里.此外,相应的完整的时频分布可以通过组装瞬时幅度和瞬时频率的PF组件。
3 基于阶次跟踪分析与 L M D 的齿轮故障诊断
3.1 阶次跟踪分析
阶次跟踪分析首先根据参考轴的转速信息对时域信号进行等角度重采样, 将时域非平稳信号转换为角域平稳信号, 再对角域平稳信号进行谱分析得到阶次谱。阶次跟踪分析能够提取信号中与参考轴转速有关的信息, 同时抑制与转速无关的信号, 因此非常适合分析旋转机械在变转速过程下的振动信号。实现阶次跟踪分析技术的关键在于, 如何实现被分析信号相对于参考轴的等角度重采样, 即阶次重采样。常用的阶次重采样方法有硬件阶次跟踪法[ 6]、计算阶次跟踪法[ 7]和基于瞬时频率估计的阶次跟踪法[ 8]等。硬件阶次跟踪法直接通过专用的模拟设备实现信号的等角度重采样,实时性好,但只适用于轴转速较稳定的情况,且成本很高;基于瞬时频率估计的阶次跟踪法不需要专门的硬件设备,无需考虑硬件安装问题,且成本较低, 但是不适用于分析多分量信号,而实际工程信号大多为多分量信号, 因此其实际应用意义不大;COT法通过软件的形式实现等角度重采样,分析精度高, 对被分析的信号没有特别的要求,并且无需特定的硬件, 因此是一种应用广泛的阶次跟踪分析方法。
根据试验条件采用COT法实现信号的阶次重采样,其具体步骤如下:
1. 对振动信号和转速信号分两路同时进行等时间间隔(间隔为$t)采样,得到异步采样信号;
2. 通过转速信号计算等角度增量 $H 所对应的时间序列ti ;
3. 根据时间序列ti的值,对振动信号进行插值,求出其对应的幅值,得到振动信号的同步采样信号,即角域平稳信号;
4.使用LMD分解平衡角重采样信号,因此sPF系列组件和相应的瞬间振幅和瞬时频率可以获得
5.光谱分析应用于每个PF的瞬时振幅组件,然后我们有订单谱
3.2 齿轮故障诊断实例
升降速过程中的齿轮故障振动信号通常是多分量的调幅-调频信号,并且故障特征频率会随着转速的变化而改变。针对升降速过程齿轮故障振动信号的这些特点, 提出了基于阶次跟踪分析和 LM D 的齿轮故障诊断方法。首先采用阶次跟踪分析将齿轮升降速过程的时域振动信号转换成角域平稳信号;然后对角域信号进行LMD分解,得到一系列PF分量,以及各个PF分量的瞬时幅值和瞬时频率; 最后对各个PF分量的瞬时幅值进行频谱分析,便可以有效地提取出齿轮故障特征。为了验证方法的正确性,在旋转机械试验台上进行了齿轮正常和齿根裂纹两种工况的试验。该系统中, 电机输入轴齿轮齿数z1=55, 输出轴齿轮齿数z2 = 75。在输入轴齿轮齿根上加工出小槽,以模拟齿根纹故 障, 因此齿轮啮合阶次xm=55,故障特征阶次xc=1。图1和图2所示分别为由转速传感器测得的输入轴瞬时转速n(t),以及由振动传感器测得的齿轮故障 振动加速度a(t),其中采样频率为8192H z,采样时间为20s从图1可以看出,输入轴转速首先从150r/min逐渐加速至1410r/min, 然后再减速到820r/min,而加速度信号的幅值也随着作出了相应的变化。不失一般性,截取图2中5~ 7s升速过程的信号 a1(t)进行分析。
图 1 输 入轴的瞬时转速 n ( t )
图 2 齿轮故障振动加速度信号 a( t )
值在秩序O=55和O=110相应的齿轮啮合秩序和双。因此这意味着频率混淆现象已经在很大程度上消除。然而,为j1(θ)仍然是一个多个组件MA-MF信号。因此,一边频带反映故障特征频率模糊。有效地提取故障特征,应用LMD j - 1(θ),因此七PF组件和残渣可以得到图6所示,这意味着LMD解调的进展。因此,它是可以提取齿轮故障特性,利用频谱分析的瞬时振幅PF组件包含主要故障信息。通过分析,我们知道失败的主要信息包括在第一个PF组件。因此,无花果。7和8给瞬时振幅a1(θ)的第一个PF组件PF 1(θ)和相应的秩序光谱的a1(θ),很明显,有不同的光谱峰值在第一顺序(O = 1)对应齿轮阶次跟踪功能,符合齿轮的实际工况。
图9和图10显示转速信号的n(t)和振动加速度信号的时域波形s(t)齿轮分别与破碎的牙齿,采样率为8192 Hz和总样品时间是20年代。断齿故障引入输入轴上的齿轮与激光切割槽的牙根。首先,一段信号s1(t)5 s-7年代为进一步分析的进步是拦截;其次,假设样本点每旋转400;第三,角域信号为j1(θ)图11所示可以通过执行命令重采样s1(t);第四,LMD适用于j-1(θ);最后,相应的秩序频谱图12所示的瞬时振幅首先PF组件PF 1(θ)可以了,很明显,有不同的光谱峰值(比在图8)在第一顺序(O = 1)阶次跟踪分析对应于齿轮故障功能,符合齿轮的实际工况。
同样的,我们同样可以做正常的齿轮。转速信号n(t)和振动的时域波形加速度信号s(t)的正常齿轮分别列在无花果。13和14,采样率为8192 Hz和总样品时间是20多岁。在上述相同的方法应用于原始信号图14所示,结果无花果所示。15和16。图15显示了角域j - 1(θ)执行顺序重采样后的信号部分(5s-7年代在筹备进展)的原始信号。图16显示了相应的瞬时振幅谱第一个PF组件,很难找到齿轮故障特征,也符合实际的工作状态的装备。
目前,多组分的另一个竞争解调方法AM-FM信号,即经验模式分解(EMD)存在,已经被广泛应用于信号解调分析(7、22)。为了比较两个EMD方法,取代LMD,我们能做的同样使用EMD进行重采样信号无花果所示。图4、11和15
图 3 齿轮故障振动加速度信号的频谱
图 4 阶次重采样后的齿轮故障振动 加速度信号
图5 j1(θ)的阶次谱
分别,因此可以获得一系列国际货币基金组织(IMF)组件。此外,相应的瞬时振幅和国际货币基金组织每个组件的瞬时频率可以通过希尔伯特变换计算。通过分析,我们知道,IMF主要特征信息包含在第一个组件。因此,只有应用于瞬时频谱分析第一个国际货币基金组织(IMF)组件的振幅。无花果。17日至19日给订单频谱对应三种振动信号的破解断层、断齿故障和正常的齿轮,分别,很明显,订单跟踪分析基于EMD也可以提取齿轮故障特性,确定齿轮的工作状态。尽管EMD和LMD都可以分解原始信号实际上,两种方法之间的差异仍然存在。EMD方法比较,如第一节中所述,LMD有更多迭代次数少等优点,不明显的效果和更少的瞬时频率的虚假成分,可以使用更多的应用在实践中。
图 6 角域信号j1( θ )的LMD分解结果
图 7 PF1(θ)的瞬时幅值A1(θ)
图 8 第1个PF分量的幅值谱
图 9 输入轴的瞬时转速 n(t)
图 1 0 正常齿轮的振动加速度信号 a(t)
图11 阶次重采样后的正常齿轮振动加速度信号j1(θ)
图 12 第一个PF分量的幅值谱
图13 输入轴转速r(t)正常齿轮前和过程中
图图14 齿轮的振动加速度信号(t)在正常状态
图15 相应的振动加速度信号为j1(θ)角域通过应用顺序重采样tos(t)图14所示。
图17 第一个IMF分量的幅值谱
图 18 第一个IMF分量的幅值谱
3 结论
在齿轮故障诊断技术、阶次跟踪是一个著名的技术,可用于故障检测的旋转机器采用振动信号。针对齿轮故障振动信号的调制特点在助跑和破败的和缺点在齿轮经常可以发相关轴转速在瞬态过程中,阶次跟踪和技术LMD相结合用于齿轮故障诊断。从理论分析和实验结果以下几点得出结论:
( 1) 在分析齿轮变转速状态下的振动信号时,转速波动会引起频谱图出现频率混叠, 而阶次跟踪分析通过对信号进行阶次重采样能够在很大程度上消除频率混叠, 使频谱图的谱线清晰可读。
( 2) 齿轮故障时的振动信号为一多分量的调幅- 调频信号, 采用LMD方法能将其分解为若干个PF分量之和,同得到各个PF分量的瞬时幅值和瞬时频率, 实现了原信号的解调。对含有齿轮故障特征的PF分量的瞬时幅值进行频谱分析, 能够准确地提取出齿轮故障特征信息。
图19 阶次的第一个国际货币基金组织(IMF)组件的正常使用EMD齿轮
( 3) 对齿轮正常和齿根裂纹两种工况的振动信号进行了分析,分析结果表明, 本文方法能够准确地反映出齿轮的实际工况。
References
[1] S.K. Lee, P.R. White, Higher-order time–frequency analysis and its application to fault detection in rotating machinery, Mechanical Systems and Signal Processing 11 (1997) 637–650.
[2] Mingsian Bai, Jiamin Huang, Minghong Hong, Fucheng Su, Fault diagnosis of rotating machinery using an intelligent order tracking system, Journal of Sound and Vibration 280 (2005) 699–718.
[3] JianDa Wu, YuHsuan Wang, PengHsin Chiang, Mingsian R. Bai, A study of fault diagnosis in a scooter using adaptive order tracking technique and neural network, Expert Systems with Applications 36 (1) (2009) 49–56.
[4] J. Ma, C.J. Li, Gear defect detection through model-based wideband demodulation of vibrations, Mechanical System and Signal Process 10 (5) (1996) 653–665.
[5] R.B. Randall, J. Antoni, S. chobsaard, The relationship between spectral correlation and envelope analysis in the diagnostics of bearing faults and other cyclostationary machine signals, Mechanical Systems and Signal Processing 15 (5) (2001) 945–962.
[6] He Lingsong, Li Weihua, Morlet wavelet and its application in enveloping, Journal of Vibration Engineering. 15 (1) (2002) 119–122.
[7] Cheng Junsheng, Yu Dejie, Yang Yu, The application of energy operator demodulation approach based on EMD in machinery fault diagnosis, Mechanical Systems and Signal Processing 21 (2) (2007) 668–677.
[8] N.E. Huang, Z. Shen, S.R. Long, The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis, Proceedings of the Royal Society of London Series 454 (1998) 903–995.
[9] N.E. Huang, Z. Shen, S.R. Long, A new view of nonlinear water waves: the Hilbert spectrum, Annual Review of Fluid Mechanics 31 (1999) 417–457.
[10] B.L. Eggers, P.S. Heyns, C.J. Stander, Using computed order tracking to detect gear condition aboard a dragline, Journal of the Southern AfricanInstitute of Mining and Metallurgy 107 (2007) 1–8.
[11] Q. Gao, C. Duan, H. Fan, Q. Meng, Rotating machine fault diagnosis using empirical mode decomposition, Mechanical Systems and Signal Processing 22 (2008) 1072–1081.
[12] F.J. Wu, L.S. Qu, Diagnosis of subharmonic faults of large rotating machinery based on EMD, Mechanical Systems and Signal Processing 23 (2009) 467–475.
[13] K.S. Wang, P.S. Heyns, Application of computed order tracking, Vold–Kalman filtering and EMD in rotating machine vibration, Mechanical Systems and Signal Processing 25 (2011) 416–430.
[14] Junsheng Cheng, Dejie Yu, Yu Yang, Application of support vector regression machines to the processing of end effects of Hilbert–Huang transform, Mechanical Systems and Signal Processing 21 (3) (2007) 1197–1211.
[15] Marcus Datig, Torsten Schlurmann, Performance and limitations of the Hilbert–Huang transformation (HHT) with an application to irregular water waves, Ocean Engineering 31 (14) (2004) 1783–1834.
[16] Jonathan S. Smith, The local mean decomposition and its application to EEG perception data, Journal of the Royal Society, Interface 2 (5) (2005) 443–454.
[17] Junsheng Cheng, Yi Yang, Yu Yang A rotating machinery fault diagnosis method based on local mean decomposition, Digital Signal Processin 22 (2) (2012) 356–366.
[18] K.M. Bossley, R.J. Mckendrick, Hybrid computed order tracking, Mechanical Systems and Signal Processing 13 (4) (1999) 627–641.
[19] JianDa Wu, Mingsian R. Bai, Fu Cheng Su, Chin Wei Huang, An expert system for the diagnosis of faults in rotating machinery using adaptive order tracking algorithm, Expert Systems with Applications 36 (3) (2009) 5424–5431.
[20] Guo Yu, Qin Shuren, Tang Baoping, Ji Yuebo, Order tracking of rotating machinery based on instantaneous frequencies estimation, Chinese Journalof Mechanical Engineering. 39 (3) (2003) 32–36.
[21] Yu Dejie, Yang Yu, Cheng Junsheng, Application of time–frequency entropy method based on Hilbert–Huang transform to gear fault diagnosis, Measurement 40 (2007) 823–830.
[22] R.T. Rato, M.D. Ortigueira, A.G. Batista, On the HHT, its problems, and some solutions, Mechanical Systems and Signal Processing 22 (6) (2008) 1374–1394.
收藏