菱形垫片冲压模具设计内缺口【中心距70】
喜欢就充值下载吧。。资源目录里展示的文件全都有,,请放心下载,,有疑问咨询QQ:414951605或者1304139763 ======================== 喜欢就充值下载吧。。资源目录里展示的文件全都有,,请放心下载,,有疑问咨询QQ:414951605或者1304139763 ========================
1 冲压变形冲压变形 冲压变形工艺可完成多种工序,其基本工序可分为分离工序和变形工序两大类。 分离工序是使坯料的一部分与另一部分相互分离的工艺方法, 主要有落料、冲孔、切边、剖切、修整等。其中有以冲孔、落料应用最广。变形工序是使坯料的一部分相对另一部分产生位移而不破裂的工艺方法,主要有拉深、弯曲、局部成形、胀形、翻边、缩径、校形、旋压等。 从本质上看,冲压成形就是毛坯的变形区在外力的作用下产生相应的塑性变形,所以变形区的应力状态和变形性质是决定冲压成形性质的基本因素。因此,根据变形区应力状态和变形特点进行的冲压成形分类,可以把成形性质相同的成形方法概括成同一个类型并进行系统化的研究。 绝大多数冲压成形时毛坯变形区均处于平面应力状态。通常认为在板材表面上不受外力的作用,即使有外力作用,其数值也是较小的,所以可以认为垂直于板面方向的应力为零,使板材毛坯产生塑性变形的是作用于板面方向上相互垂直的两个主应力。由于板厚较小,通常都近似地认为这两个主应力在厚度方向上是均匀分布的。基于这样的分析,可以把各种形式冲压成形中的毛坯变形区的受力状态与变形特点,在平面应力的应力坐标系中(冲压应力图)与相应的两向应变坐标系中(冲压应变图)以应力与应变坐标决定的位置来表示。也就是说,冲压应力图与冲压应变图中的不同位置都代表着不同的受力情况与变形特点 (1)冲压毛坯变形区受两向拉应力作用时, 可以分为两种情况: 即 0t=0和 0,t=0。再这两种情况下,绝对值最大的应力都是拉应力。以下对这两种情况进行分析。 1)当0且t=0时, 安全量理论可以写出如下应力与应变的关系式: (1-1) /(-m)=/(-m)=t/(t -m)=k 式中 ,t分别是轴对称冲压成形时的径向主应变、切向主应变和厚度方向上的主应变; ,t分别是轴对称冲压成形时的径向主应力、切向主应力和厚度方向上的主应力; m平均应力,m=(+t)/3; k常数。在平面应力状态,式(11)具有如下形式: 3/(2-)=3/(2-t)=3t/-(t+)=k (12) 因为0,所以必定有 2-0 与0。这个结果表明:在两向 2 拉应力的平面应力状态时, 如果绝对值最大拉应力是, 则在这个方向上的主应变一定是正应变,即是伸长变形。 又因为0,所以必定有-(t+)0 与t2时,0;当 0。 的变化范围是 =0 。在双向等拉力状态时,= ,有式(12)得 =0 及 t 0 且t=0 时,有式(12)可知:因为 0,所以 1)定有 2 0 与0。这个结果表明:对于两向拉应力的平面应力状态,当的绝对值最大时,则在这个方向上的应变一定时正的,即一定是伸长变形。 又因为0,所以必定有-(t+)0 与t,0;当 0。 的变化范围是 = =0 。当= 时,=0,也就是在双向等拉力状态下,在两个拉应力方向上产生数值相同的伸长变形;在受单向拉应力状态时,当=0 时,=- /2,也就是说,在受单向拉应力状态下其变形性质与一般的简单拉伸是完全一样的。 这种变形与受力情况,处于冲压应变图中的 AOC 范围内(见图 11) ;而在冲压应力图中则处于 AOH 范围内(见图 12) 。 上述两种冲压情况,仅在最大应力的方向上不同,而两个应力的性质以及它们引起的变形都是一样的。因此,对于各向同性的均质材料,这两种变形是完全相同的。 (1)冲压毛坯变形区受两向压应力的作用,这种变形也分两种情况分析,即 t=0 和 0,t=0。 1)当0 且t=0 时,有式(12)可知:因为0,一定有2-0 与0。这个结果表明:在两向压应力的平面应力状态时,如果 3 绝对值最大拉应力是0,则在这个方向上的主应变一定是负应变,即是压缩变形。 又因为0 与t0,即在板料厚度方向上的应变是正的,板料增厚。 在方向上的变形取决于与的数值: 当=2时, =0; 当2时,0;当 0。 这时 的变化范围是 与 0 之间 。当=时,是双向等压力状态时,故有 =0;当=0 时,是受单向压应力状态,所以=-/2。这种变形情况处于冲压应变图中的 EOG 范围内(见图 11) ;而在冲压应力图中则处于 COD 范围内(见图 12) 。 2) 当 0 且t=0 时,有式(12)可知:因为 0,所以一定有 2 0 与0。这个结果表明:对于两向压应力的平面应力状态,如果绝对值最大是,则在这个方向上的应变一定时负的,即一定是压缩变形。 又因为0 与t0,即在板料厚度方向上的应变是正的,即为压缩变形,板厚增大。 在方向上的变形取决于与的数值: 当=2时, =0; 当2,0;当 0。 这时,的数值只能在= =0 之间变化。当= 时,是双向等压力状态,所以=0。这种变形与受力情况,处于冲压应变图中的 GOL 范围内(见图 11) ;而在冲压应力图中则处于 DOE 范围内(见图 12) 。 (1)冲压毛坯变形区受两个异号应力的作用,而且拉应力的绝对值大于压应力的绝对 值。这种变形共有两种情况,分别作如下分析。 1)当0,|时,由式(12)可知:因为0,|,所以一定有 2-0 及0。这个结果表明:在异号的平面应力状态时,如果绝对值最大应力是拉应力,则在这个绝对值最大的拉应力方向上应变一定是正应变,即是伸长变形。 又因为0,|,所以必定有00,0, |时,由式(12)可知:用与前项相同的方法分析可得0。即在异号应力作用的平面应力状态下,如果绝对值最大应力是拉应力,则在这个方向上的应变是正的,是伸长变形;而在压应力方向上的应变是负的(0, 0, 0,|时,由式(12)可知:因为0,|,所以一定有 2- 0 及0,0,必定有 2- 0,即在拉应力方向上的应变是正的,是伸长变形。 这时的变化范围只能在=-与=0 的范围内 。当=-时,00,0, |时,由式(12)可知:用与前项相同的方法分析可得0, 0, 0,0 AON GOH + + 伸长类 AOC AOH + + 伸长类 双向受压 0,0 EOG COD 压缩类 0,| MON FOG + + 伸长类 | LOM EOF 压缩类 异号应力 0,| COD AOB + + 伸长类 | | DOE BOC 压缩类 7 变形区质量问题的表现形式 变形程度过大引起变形区产生破裂现象 压力作用下失稳起皱 成形极限 1主要取决于板材的塑性,与厚度无关 2可用伸长率及成形极限 DLF 判断 1主要取决于传力区的承载能力 2取决于抗失稳能力 3与板厚有关 变形区板厚的变化 减薄 增厚 提高成形极限的方法 1改善板材塑性 2使变形均匀化, 降低局部变形程度 3工序间热处理 1采用多道工序成形 2改变传力区与变形区的力学关系 3采用防起皱措施 伸 长 类 成 形胀 形拉 深翻 边压 缩 类 成 形压 缩 类 成 形扩 口拉 深胀 形伸 长 类 成 形缩 口缩 口扩口+-+ /4 /4翻 边-+- 图 13 冲压应变图 8 冲压成形极限变形区的成形极限传动区的成形极限伸长类变 形压缩类变 形强 度抗拉与抗压缩失衡能力塑 性抗缩颈能 力变形均化与扩展能力塑 性抗起皱能 力变形力及其 变 化各向异性 值硬化性能变形抗力化学成分组 织变形条件硬化性能应力状态应变梯度硬化性能模具状态力学性能值与 值相对厚度化学成分组 织变形条件 图 13 体系化研究方法举例 9 Categories of stamping forming Many deformation processes can be done by stamping, the basic processes of the stamping can be divided into two kinds: cutting and forming. Cutting is a shearing process that one part of the blank is cut form the other .It mainly includes blanking, punching, trimming, parting and shaving, where punching and blanking are the most widely used. Forming is a process that one part of the blank has some displacement form the other. It mainly includes deep drawing, bending, local forming, bulging, flanging, necking, sizing and spinning. In substance, stamping forming is such that the plastic deformation occurs in the deformation zone of the stamping blank caused by the external force. The stress state and deformation characteristic of the deformation zone are the basic factors to decide the properties of the stamping forming. Based on the stress state and deformation characteristics of the deformation zone, the forming methods can be divided into several categories with the same forming properties and to be studied systematically. The deformation zone in almost all types of stamping forming is in the plane stress state. Usually there is no force or only small force applied on the blank surface. When it is assumed that the stress perpendicular to the blank surface equal to zero, two principal stresses perpendicular to each other and act on the blank surface produce the plastic deformation of the material. Due to the small thickness of the blank, it is assumed approximately that the two principal stresses distribute uniformly along the thickness direction. Based on this analysis, the stress state and 10 the deformation characteristics of the deformation zone in all kind of stamping forming can be denoted by the point in the coordinates of the plane principal stress(diagram of the stamping stress) and the coordinates of the corresponding plane principal stains (diagram of the stamping strain). The different points in the figures of the stamping stress and strain possess different stress state and deformation characteristics. (1)When the deformation zone of the stamping blank is subjected toplanetensile stresses, it can be divided into two cases, that is 0,t=0and 0,t=0.In both cases, the stress with the maximum absolute value is always a tensile stress. These two cases are analyzed respectively as follows. 2)In the case that 0andt=0, according to the integral theory, the relationships between stresses and strains are: /(-m)=/(-m)=t/(t -m)=k 1.1 where, ,t are the principal strains of the radial, tangential and thickness directions of the axial symmetrical stamping forming; ,and tare the principal stresses of the radial, tangential and thickness directions of the axial symmetrical stamping forming;m is the average stress,m=(+t)/3; k is a constant. In plane stress state, Equation 1.1 3/(2-)=3/(2-t)=3t/-(t+)=k 1.2 Since 0,so 2-0 and 0.It indicates that in plane stress state with two axial tensile stresses, if the tensile stress with the maximum absolute value is , the principal strain in this direction must be positive, that is, the deformation belongs 11 to tensile forming. In addition, because 0,therefore -(t+)0 and t2,0;and when 0. The range of is =0 . In the equibiaxial tensile stress state = ,according to Equation 1.2,=0 and t 0 and t=0, according to Equation 1.2 , 2 0 and 0,This result shows that for the plane stress state with two tensile stresses, when the absoluste value of is the strain in this direction must be positive, that is, it must be in the state of tensile forming. Also because0,therefore -(t+)0 and t,0;and when 0. 12 The range of is = =0 .When =,=0, that is, in equibiaxial tensile stress state, the tensile deformation with the same values occurs in the two tensile stress directions; when =0, =- /2, that is, in uniaxial tensile stress state, the deformation characteristic in this case is the same as that of the ordinary uniaxial tensile. This kind of deformation is in the region AON of the diagram of the stamping strain (see Fig.1.1), and in the region GOH of the diagram of the stamping stress (see Fig.1.2). Between above two cases of stamping deformation, the properties ofand, and the deformation caused by them are the same, only the direction of the maximum stress is different. These two deformations are same for isotropic homogeneous material. (1)When the deformation zone of stamping blank is subjected to two compressive stressesand(t=0), it can also be divided into two cases, which are 0,t=0 and 0,t=0. 1)When 0 and t=0, according to Equation 1.2, 2-0 与 =0.This result shows that in the plane stress state with two compressive stresses, if the stress with the maximum absolute value is 0, the strain in this direction must be negative, that is, in the state of compressive forming. Also because 0 and t0.The strain in the thickness direction of the blankt is positive, and the thickness increases. The deformation condition in the tangential direction depends on the values 13 of and .When =2,=0;when 2,0;and when 0. The range of is 0.When =,it is in equibiaxial tensile stress state, hence=0; when =0,it is in uniaxial tensile stress state, hence =-/2.This kind of deformation condition is in the region EOG of the diagram of the stamping strain (see Fig.1.1), and in the region COD of the diagram of the stamping stress (see Fig.1.2). 2)When 0and t=0, according to Equation 1.2,2- 0 and 0. This result shows that in the plane stress state with two compressive stresses, if the stress with the maximum absolute value is , the strain in this direction must be negative, that is, in the state of compressive forming. Also because 0 and t0.The strain in the thickness direction of the blankt is positive, and the thickness increases. The deformation condition in the radial direction depends on the values of and . When =2, =0; when 2,0; and when 0. The range of is = =0 . When = , it is in equibiaxial tensile stress state, hence =0.This kind of deformation is in the region GOL of the diagram of the stamping strain (see Fig.1.1), and in the region DOE of the diagram of the stamping stress (see Fig.1.2). (3) The deformation zone of the stamping blank is subjected to two stresses with opposite signs, and the absolute value of the tensile stress is larger than that of the compressive stress. There exist two cases to be analyzed as follow: 14 1)When 0, |, according to Equation 1.2, 2-0 and 0.This result shows that in the plane stress state with opposite signs, if the stress with the maximum absolute value is tensile, the strain in the maximum stress direction is positive, that is, in the state of tensile forming. Also because 0, |, therefore =-. When =-, then 0,0,0, |, according to Equation 1.2, by means of the same analysis mentioned above, 0, that is, the deformation zone is in the plane stress state with opposite signs. If the stress with the maximum absolute value is tensile stress , the strain in this direction is positive, that is, in the state of tensile forming. The strain in the radial direction is negative (=-. When =-, then 0, 0, 0,|, according to Equation 1.2, 2- 0 and 0 and 0, therefore 2- 0. The strain in the tensile stress direction is positive, or in the state of tensile forming. The range of is 0=-.When =-, then 0,0,0, |, according to Equation 1.2 and by means of the same analysis mentioned above,=-.When =-, then 0, 0, 0,0 AON GOH + + Tensile AOC AOH + + Tensile Biaxial compressive stress state 0,0 EOG COD Compressive 0,| MON FOG + + Tensile | LOM EOF Compressive State of stress with opposite signs 0,| COD AOB + + Tensile | | DOE BOC Compressive 20 Table 1.2 Comparison between tensile and compressive forming Item Tensile forming Compressive forming Representation of the quality problem in the deformation zone Fracture in the deformation zone due to excessive deformation Instability wrinkle caused by compressive stress Forming limit 3Mainly depends on the plasticity of the material, and is irrelevant to the thickness 4Can be estimated by extensibility or the forming limit DLF 4Mainly depends on the loading capability in the force transferring zone 5Depends on the anti-instability capability 6Has certain relationship to the blank thickness Variation of the blank thickness in the deformation zone Thinning Thickening Methods to improve forming limit 4Improve the plasticity of the material 5Decrease local 4Adopt multi-pass forming process 5Change the mechanics 21 deformation, and increase deformation uniformity 6Adopt an intermediate heat treatment process relationship between the force transferring and deformation zones 6Adopt anti-wrinkle measures Fig.1.1 Diagram of stamping straintensile formingbulgingdeepdrawingflangingcompressive formingcompressive formingexpandingdeep drawingbulgingtensile formingneckingneckingexpanding+-+ /4 /4flanging-+- Fig.1.2 Diagram of stamping stress 22 TensileformingCompressionformingStrengthCapability ofanti-wrinkleunder the tensileand compressivestressesPlasticityCapability ofanti-neckingDeformationuniformity andextension capabilityPlasticityCapability ofanti-wrinkleDeformationforce and itsAnisotropy value of rHardening characteristicsDeformation resistanceChemistry componentStructureDeformation conditionsHardening characteristicsState of stressGradient of strainHardening characteristicsDie shapeMechanical proertyThe value of the n and rRelative thicknessChemistry componentStructureDeformation conditions Fig.1.3 Examples for systematic research methods
收藏