5000KN单臂液压机的液压系统设计
喜欢就充值下载吧。。资源目录里展示的文件全都有,,请放心下载,,有疑问咨询QQ:414951605或者1304139763 ======================== 喜欢就充值下载吧。。资源目录里展示的文件全都有,,请放心下载,,有疑问咨询QQ:414951605或者1304139763 ========================
江南大学太湖学院
系 专业
毕 业 设 计论 文 任 务 书
一、题目及专题:
1、 题目 5000kN单臂液压机的液压系统设计
2、专题
二、课题来源及选题依据
设计题目为无锡某企业在建系统,采用典型的插装阀集成系统,在机床、内燃机、汽车电器、军工企业等行业都有应用,目前的液压控制由于其力大、平稳等优点,在控制系统中占比越来越大,学生通过该系统设计,能综合运用所学的机械知识和液压与气动控制的知识。解决生产中的实际问题。
三、本设计(论文或其他)应达到的要求:
1. 液压系统设计,绘制液压系统图,选择典型的液压元件
2. 液压系统典型回路设计;
3. 液压元件的选用;
4.编写设计说明书(大于30页);
5.专业外语翻译(大于8000~10000字符,约合汉字5000字符);
四、接受任务学生:
班 姓名
五、开始及完成日期:
自 年 月 日 至 年 月 日
六、设计(论文)指导(或顾问):
指导教师 薛庆红 签名
签名
签名
教研室主任
〔学科组组长研究所所长〕 签名
系主任 签名
年 月 日
5000kn单臂液压机(略见图纸)
参数按下表而定(500T型号的)
型号
单位
45T
63T
100T
160T
200T
315T
400T
500T
630T
公称力
KN
400
630
1000
1600
2000
3150
4000
5000
6300
顶出力
KN
63
100
200
250
400
630
630
1000
1250
液体最大工作压力
MPa
25
25
26.5
26
25
25
25
26
26
滑块行程
mm
400
500
500
500
700
800
800
900
900
最大开口高度
mm
600
700
900
900
1120
1250
1400
1500
1500
工作台尺寸
前后
mm
400
500
580
800
900
1200
1200
1400
1600
左右
mm
400
500
710
800
900
1200
1260
1400
1600
顶出行程
mm
120
160
200
200
250
300
300
300
400
滑块速度
空程下行
mm/s
40
76
100
100
100
100
100
100
>100
工作
mm/s
10
10
8-15
8-15
8-15
8-15
8-15
10
12
回程
mm/s
60
60
60
60
70
70
70
80
65
机床外形尺寸
左右
mm
1000
1100
1200
1600
2120
2220
2220
2420
2520
前后
mm
500
650
380
400
500
500
650
680
700
地面上高度
mm
2406
2430
3300
3350
3690
3900
4050
5348
电机功率
KW
5.5
5.5
7.5
15
18.5
22
22
37
总重量
T
1.95
2.5
4
7
12
15
20
30
无锡太湖学院
毕业设计(论文)
开题报告
题目:5000KN单臂液压机的液压系统设计
信机 系 机械工程及自动化 专业
学 号: 0923812
学生姓名: 詹 颂
指导教师: 薛庆红 (职称:副教授)
(职称: )
2012 年 11月 21日
课题来源
无锡某企业
科学依据(包括课题的科学意义;国内外研究概况、水平和发展趋势;应用前景等)
(1)课题科学意义
随着近50年的科学技术的进步与发展,液压技术已经成为了一门影响现代机械装备技术的重要基础学科和基础技术,液压机是一种利用液体压力来传递能量,以实现各种压力加工工艺的机床。随着新工艺及新技术的应用,液压机在金属加工及非金属成形方面的应用越来越广泛,在机床行业中的占有份额正在大幅度攀升。通过对本课题进行设计,进一步理解和掌握液压系统、液压机、机械加工工艺等的理论知识,了解先进液压技术、工艺技术,提高液压系统分析能力、结构设计能力,加强分析和解决现场机械和结构设计问题的能力,为以后工作时的产品开发、技术改进打下坚实基础,并在实际的生产中灵活处理质量、生产率和成本之间的关系,获得良好的经济效益。国外企业的竞争,国内用户要求的不断提升,液压机走创新路子,形成核心竞争力的呼声更高。国产液压机械与国外同类产品的差距,除了研发能力.技术创新不足之外,还主要表现在液压性能和运行可靠性两个方面。因此,必须下大力气研究从生产过程、管理过程.流通过程与创新的系统优化问题,借助系统论控制论的理论,努力消除现存的问题,缩短差距。应加强产学研结合,开创教育与企业新局面。通过企业和科研院所的人才与设施、科研与生产互动,加快人才培养和技术提升。
研究液压机的传动系统,对于提高生产效率降低生产成本具有重要意义。此项研究也是对大学四年所学课程的一次总复习,它将机械制图、液压设计和液压传动等机械设计制造及其自动化主要专业课程紧密联系在一起,利用所学的机械与控制相关知识来解决实际的生产问题,将理论设计与实际运用联系起来,需要考虑多方面的问题,如成本、系统可靠性和机械设备使用寿命等等。
(2)发展趋势
1、配有自动上下料装置的液压机或自动生产线将会成为未来液压机发展的方向。
2、多工位液压机的需求将会大幅度增加。快速、高速液压机在批量生产中能成倍地提高效率。
3、依托电液比例技术、传感器、电子、计算机、网络等提升液压机的性能。
4、在环保、节能方面,今后在液压机的设计及制造中应引起各制造企业的足够重视。
研究内容
通过调研应明白要对一个系统进行改进或创新以满足生产的需求,信息的获取是非常重要的,分析5000KN单臂液压机工作要求,完成5000KN单臂液压机件的设计研究的结构分析、元件的选用等,在满足生产工作要求的情况下,应尽可能提高效率,提高系统的稳定性,以减少产品的设计生产成本。
拟采取的研究方法、技术路线、实验方案及可行性分析
通过现场调研与相关资料查阅,对5000KN单臂液压机进行系统分析,并通过模拟实验分析建立5000KN单臂液压机工作状态实体模型,设计5000KN单臂液压机的液压系统结构和参数,进行现场实验,来进行系统设计的合理性。
特色或创新之处
适用于本企业的某生产线的设计,可降低工人的劳动强度和生产成本。
研究计划及预期成果
研究计划:
2012年10月12日-2012年12月25日:按照任务书要求查阅论文相关参考资料,填写毕业设计开题报告书。
2013年1月11日-2013年3月5日:填写毕业实习报告。
2013年3月8日-2013年3月14日:按照要求修改毕业设计开题报告。
2013年3月15日-2013年3月21日:学习并翻译一篇与毕业设计相关的英文材料。
2013年3月22日-2013年4月11日:撰写设计说明书。
2013年4月12日-2013年4月25日: 装配图、零件图的绘制。
2013年4月26日-2013年5月21日:毕业论文撰写和修改工作。
已具备的条件和尚需解决的问题
针对实际使用过程中5000KN单臂液压机的液压系统存在的不足,综合所学的机械理论设计与液压传动理论,如何对5000KN单臂液压机系统进行再次的改进和完善,进而提高学生开发和创新机械产品的能力。
指导教师意见
指导教师签名:
年 月 日
教研室(学科组、研究所)意见
教研室主任签名:
年 月 日
系意见
主管领导签名:
年 月 日
Hydraulic System
There are only following three basic methods of transmitting power : electrical,mechanical ,and fluid power. Most applications actually use a combination of the three methods to obtain the most efficient overall system. To properly determine which principle method to use, it is important to understand the characteristic of each method. For example,hydraulic systems on the long distance economically deliver power more than mechanical systems. However, fluid systems are restricted to shorter distances than electrical systems. Hydraulic power transmission systems are concerned with the generation, modulation, and control of sculptress and flow, and in general such systems include:
l. Pumps convert available power from the prime mover to hydraulic power at the actuator.
2. Valves control the direction of pump- flow, the level of produced power, and the amount of fluid-flow to the actuators. The power level is determined by controlling both the flow and pressure level.
3. Actuators convert hydraulic power to usable mechanical power output at the point required.
4. The medium is a liquid, provides rigid transmission and control as well as lubrication of components, sealing in valves, and cooling of the system.
5.Connectors link the various system components, provide power conductors for the fluid under pressure, and fluid flow return to tank(reservoir).
6. Fluid storage and conditioning equipment ensure sufficient quality and quantity as well as cooling of the fluid. Hydraulic systems are used in industrial applications such as stamping presses, steel mills and general manufacturing, agricultural machines, mining industry, aviation, space technology, deep-sea exploration, transportation, Narine technology, and offshore gas and petroleum exploration. In short, many people get somehow benefiting from the technology of hydraulics.
The secret of the success and widespread use of the hydraulic system is its versatility and manageability. Fluid power is not hindered by the geometry of the machine as is the case in mechanical systems. Also, power can be transmitted in almost limitless quantities because fluid systems are not so limited by the physical limitations of materials as are the electrical systems. For example, the performance of an electromagnet is limited by the saturation limit of steel. On the other hand, the power limit of fluid systems is limited only by the strength capacity of the material. Industry is going to depend more and more on automation in order to increase productivity. This includes remotion and direct control of production operations, manufacturing processes, and materials handling. Fluid power is the muscle of automation because of the advantages in the following four major categories.
1. Ease and accuracy of control. By the use of simple levers and push buttons, the operator of a fluid power system can readily start , stop ,speed up or slow down, and provide any desired horsepower with tolerances as precise as one ten-thousandth of an inch.
2. Multiplication of force. A fluid power system (without using cumbersome gears, pulleys, and levers) can multiply force simply and efficiently create the output from a fraction of an ounce to several hundred tons.
3. Constant force or torque. Only fluid power systems are capable of providing constant force or torque regardless of speed changes. It produces the work output moving from a few inches per hour to several hundred inches per minute, or from a few revolutions per hour to thousands of revolutions per minute.
4. Simplicity, safety, economy. In general, fluid power systems use fewer moving parts than comparable mechanical or electrical systems. Thus, they are simpler to maintain and operate. This, in turn, maximizes safety, compactness, and reliability. For example, a new power steering control design has made all other kinds of power systems obsolete on many off-highway vehicles. The steering unit consists of a manually operated directional control valve and meter in a single body. Because the steering unit is fully fluid-linked, without the link of mechanical linkages, universal joints, bearings, reduction gears, etc. This provides a simple, compact system. In addition, very little input torque is required to produce the control needed for the toughest applications. This is important where limitations of control space require a small steering wheel and it becomes necessary to reduce operator fatigue. Additional benefits of fluid power systems include instantly reversible motion, automatic protection against overloads, and infinitely variable speed control. Fluid power systems also have the highest horsepower per weight ratio of any known power source. In spite of all these highly desirable features of fluid power, it is not a panacea for all power transmission problems. Hydraulic systems also have some drawbacks. Hydraulic oils are messy, and leakage is impossible to completely eliminate. Also, most hydraulic oils can cause tires if an oil leak occurs in an area of hot equipment.Now, a concrete example is following - we use hydraulic stations to introduce the advantages of the hydraulic system.
Hydraulic Station and the development of hydraulic components Profiles Hydraulic Pump Station also known as the stations is independent hydraulic device. It is requested by the oil gradually and controls the hydraulic oil flow direction, pressure and flow rate, applied to the mainframe and hydraulic devices ability of hydraulic machinery. Users just need to connect hydraulic station and host of implementing agencies (motor oil or fuel tanks) with tubing. Hydraulic machinery can realize these specified movements and the work cycle. Hydraulic pump station is equipped with Pump device, manifold or valve portfolio, tanks, electrical boxes.
Pump device -- is equipped with motors and pumps. Hydraulic station is the source of power and can translate mechanical energy into hydraulic oil pressure.
Manifold -- is installed by hydraulic valve and assembled channel. It has the function of adjusting the direction for implementation of hydraulic oil, pressure and flow.
Valve portfolio -- plate valve is installed in up board, the back board connects and has the same functional with IC.
Tank -- plate welding semi-closed containers, also is loaded with oil filtering network, air filters ans is used to save oil, oil filters and cooling.
Electrical boxes -- has the two patterns. A set of external fuse terminal plate and a full range of control electrical.
The principle of the hydraulic Station: the motor drives pump rotation, pump absorbs oil from the oil tank, then translates mechanical energy into hydraulic pressure of the station. Hydraulic oil through Manifold (or valve combinations) realized the direction, pressure. After adjusting flow pipe, it external flows to the cylinder hydraulic machinery or motor oil, so as to control the direction of the motive fluid, the size of transformation force and the speed of the pace, finally it promotes hydraulic machinery to the various acting.
Firstly, A development course
China Hydraulic (including hydraulic, the same below), pneumatic and seals industrial development process can be broadly divided into three phases, namely : the early 1950s to the early 1960s is the initial stage. The 60s and 70s is the growth stage for specialized production system.The80s-90s is the growth stage for the rapid development .Meanwhile, hydraulic industry started in the early 1950s from the machine tool industry production of fake us-grinder, broaching machine, copying lathe, and other hydraulic drive. Hydraulic Components from the plant hydraulic machine shop is self-occupied. After entering the l960s, the application of hydraulic technology from the machine gradually extended to the agricultural machinery and mechanical engineering fields, attached to the original velocity of hydraulic shop some stand out as pieces of hydraulic professional production. To the late 1960s, early 1970s, with the development of mechanized production, especially the second automobile factory provides efficient, automated equipment. The Hydraulic Components manufacturing has experienced rapidly development of the situation. Groups of SME have become professional hydraulic parts factory. China annual output of hydraulic components has nearly 200.000 in 1968. Machine tools, agricultural machinery, mechanical engineering industries, the production of hydraulic parts factory have been the professional development of more than 100 and an annual output more than one million in 1973 and an independent hydraulic manufacturing industry has begun to take shape. Then , hydraulic pieces of fake products has developed from the Soviet Union for the introduction of the product and combining the products .Hypertension has developed to medium and high pressure and the development of the electro-hydraulic servo valves and systems, hydraulic application areas further expanded .Pneumatic industry started later than the industrial hydraulic years. Until 1967 professional pneumatic components factory began to establish . Pneumatic Components looked only as commodity production and sales. It deal with rubber and plastics, mechanical seals and sealing flexible graphite . In the early 1950s, it produced ordinary 0-rings, rubber and plastics extrusion, such as oil seal sealing and seal asbestos. Until the early 1960s,it begun to production of mechanical seals and flexible graphite sealing products. In 1970s, under the burning of the former Ministry, a Ministry, the Ministry of Agricultural Mechanization System, a group of professional production plants have been established, and the official establishment of industries to seal industrial development has laid the foundation for growth. Since the l980s, under the guidelines of country’s reform and opening up policy , with the development of the machinery industry, based mainframe pieces behind the conflicts have become increasingly prominent and attracted the attention of the relevant departments. To this end, the Ministry originating in 1982 and formed the basis of common pieces of Industry, will centralize hydraulic, pneumatic and seals specialized factories original machine tools scattered in agricultural machinery, mechanical engineering industries and place them under common management infrastructure pieces Bureau, so that the industry in the planning, investment, technology and scientific research and development in areas got the guidance and support of infrastructure pieces Bureau. Since then it entered a phase of rapid development and has introduced more than 60 items of advanced technology from abroad, including more than 40 items of hydraulic, pneumatic 7. After digestion and absorption and transformation, now they have mass production, and industry-leading products. In recent years, the industry has increased the technological transformation efforts.Fom1991 to 1998,state,Local enterprises and the self-Financing have fund total input of about 20 billion ¥, of which Hydraulic was more than I .6 billion¥ . Through technological transformation and technology research, a number of major enterprises have further improved the level of technology, technique and equipment, which has laid a good foundation in order to form a higher Starting point, specialization, and run production . In recent years, under the guidelines of development of common ownership, different ownership SME rapidly have rise to show great vitality. With the further opening up, three-funded enterprises developed rapidly which played an important role to the development of industry standards and expanding exports. Today, China and the United States, Japan, Germany and other countries famous manufacturers have established joint ventures or wholly-owned by foreign manufacturers which involved in a piston pump / motor, planetary reduction gears, steering gear, hydraulic control valve, hydraulic system, hydrostatic transmission, hydraulic Casting, pneumatic control valve, cylinder, gas processing triple pieces, mechanical seals, rubber and seal products. It has more than 50 production enterprises and attracted foreign investment over 200 million U.S. dollars.
Secondly, the current situation
(1)Basic Profiles
After 40 years of efforts, China hydraulic, pneumatic and sealing industry have formed the industrial system with a relatively complete categories, a certain level of technical capacity. According to the 1995, Third National Industrial Census statistics said that state-owned, village-run, private and cooperative enterprises, individual, “three capital” enterprises with a total of more than 1,300 engaged in hydraulic Pneumatic and sealing parts industry with annual sales income of 100 million¥, of which hydraulic is about 700, Pneumatic and sealing parts industry is approximately300. By 1996 with the international trade statistics, the total output value of China’s hydraulic industry is 2.348 billion¥, accounting for the world’s 6, the output of Pneumatic industry is 419 million¥, accounting for world No. 10.
(2)The current supply and demand profiles
Through the introduction of technology, independent development and technological innovation, high-pressure piston pump, gear pumps, vane pump, General Motors hydraulic valves, tanks, non-lubricated aerodynamic pieces and various seals of the first large technology products have increased noticeably and they can have stability mass production and provide a level of assurance for various mainframe products. In addition, they scored some achievements at hydraulic and pneumatic components of the CAD system, pollution control, proportional servo technology, and have been already in production. Currently, hydraulic, pneumatic and seals products totally have about 3,000 species, more than 23.000 specifications. Among them, there are 1,200 hydraulic varieties, more than I 0,000 specifications (including hydraulic products 60 varieties,500 specifications): Pneumatic has 1 .350 varieties, more than 8,000 specifications: Rubber seal has 350 species, more than 5,000 specifications, they basically cater to the different types of mainframe products to the general needs. The complete sets of equipment for major varieties of matching rate was over 60%, and it started a small amount of exports. In 1998 the output of homemade hydraulic is 4.8 million, the sales of which is about 28 billion (of which about 70% is mechanical systems);The yield of aerodynamic is 3.6 million, Sales of which is about 5.5 billion (of which about 60% is mechanical systems). Seals output is about 800 million, sales of which is about 10 billion (of which about 50% is mechanical systems). According to the China 1998 annual Hydraulic Pneumatic Seals Industry Association, the rate of hydraulic product sales is 97. 5% (101% for hydraulic), pneumatic 95.9%, sealed 98.7%. This fully reflects the basic marketing convergence. Our country hydraulic, pneumatic and sealing industry have attained a great deal of progress, but compared with mainframe development needs, and the world’s advanced level, there are still many gaps, mainly reflected in the product variety, performance and reliability, and so on. Hydraulic products as an example, is the same one-third of products abroad. life is for half abroad. In order to meet key mainframe, and mainframe imports of major technology and equipment needs, every year we import a large number of hydraulic, pneumatic and sealing Products. According to customs statistics and the analysis of data, in 1998,the import sales of hydraulic, pneumatic and seals is about 200 million U.S. dollars, which Hydraulic is about 1.4 billion dollars, aerodynamic is nearly 0.3million U.S. dollars, sealed industry is about 0.3million U.S. dollars. It is a slight decline compared with 1997 . By sums, currently the domestic market share of the imported products is about 30%. In 1998 ,the demand of domestic hydraulic market is total of about six million, the total sales is nearly 40 billion. The total demand of aerodynamic is about 5 million, with sales more than 0.7 billion ¥The total demand of Seals is about 1.1 billion, the total sales is about 1.3 billion.
Thirdly, the development trend of the future
1.the main factors of affecting the development
(1) The product development ability, and the level of technological development and speed can not completely meet the advanced mainframe products, major equipment and technology imported equipment and maintenance support:
(2) The manufacturing technology, the level of equipment and management standards of A number of enterprises are comparatively backward, along with a week sense of quality, which result in low levels of product performance quality, reliability poor services in a timely manner, lack of satisfaction and trust of the brand-name products:
(3) The production low of industry specialization, scattered strength, low repeat serious, the convergence products between regions and enterprises, blindly competing with each other, driving down prices, the decline of enterprise returns, lack of funds, difficult liquidity, the inadequate product development and technological transformation seriously have restricted the industry to improve the overall level of competition and competitive strength.
(4) As the internationalization of the domestic market is increasing, foreign companies have entered the Chinese market and participate in competition with the domestic private and cooperative enterprises, individuals, foreign-funded enterprises and so on. As the rise of state-owned enterprises has more and more big impact to state-owned enterprises.
2 .The development trend
As the socialist market economy continues to deepen, the relationship of supply and demand of hydraulic, pneumatic and sealing products in the market has a greater change. Long ago, the characterized by "shortage" of the seller's market has basically become the characterized by excess "structural" buyer's market. Look from the overall ability, it is in oversupply situation, especially the supply of the generally low grade of hydraulic, pneumatic and sealing parts, generally exceeds the demand, but the host need high parameters of high technical content, high value-added high-end products, and can't meet the needs of the market, it can only rely on imports. After China's accession to the WTO, its impact could be bigger. Therefore, during "15" , the growth of the industry output value must not be dependent on the amount of growth and should increase, adjust the industrial structure and product structure according to the structural contradiction of industry , namely we should rely on quality, technology upgrade, promote products to meet the market demand and pull, seek a bigger development.
Pneumatic pressure system
Pneumatic pressure system is pressure gas transmission system and control power, as the name suggests, usually it uses air pressure (no other gas) as the fluid medium. Because air is a safe, low cost and widely available fluid. It is safe that Air in system components may ignite the leakage situation (using air as medium) in particular. In pneumatic systems, compressors are used for compressed air and supply the required. Usually it has a piston compressor, screw and vane type. Compressor is basically according to the ideal gas law, by reducing its volume to increase the gas pressure. Pneumatic system is usually considered using large central air compressor as an unlimited source, this is similar that as long as the plug in the power system lift up into the socket and power can be obtained. Using this method, the gas pressure can be transmitted from the source to every corner of the whole factory. The gas pressure can remove dirt through the air cleaner. the dirt is likely
收藏