高三数学第二轮复习课件:二次曲线.ppt
《高三数学第二轮复习课件:二次曲线.ppt》由会员分享,可在线阅读,更多相关《高三数学第二轮复习课件:二次曲线.ppt(22页珍藏版)》请在装配图网上搜索。
高考资源网,你身边的高考专家,高三数学专题复习课件,二次曲线专题,,课堂练习与评讲,课堂训练题,选择题1.如果方程x2+ky2=2表示焦点在y轴上的椭圆,那么实数k的取值范围是:A.(0,+∞)B.(0,2)C(1,+∞)D(0,1)2.焦点在(-1,0),顶点在(1,0)的抛物线方程是:A.y2=8(x+1)B.y2=-8(x+1)C.y2=8(x-1)D.y2=-8(x-1)3.椭圆x2+9/5y2=36的离心率为:A.1/3B.2/3C.1/2D.3/44.设椭圆的两个焦点分别是F1,F2,短轴的一个端点是B,则△BF1F2的周长是:A.B.C.D.5.若抛物线y2=2x上一点到焦点距离为5,则该,点的坐标是:A.(4,2)或(4,-2)B.(5,)或(5,-)C.(4.5,3)或(4.5,-3)D(6,2)或(6,-2)6.以坐标轴为对称轴,中心在原点,实轴长为10,焦距为12的双曲线方程是:A.x2/25-y2/11=1或.y2/25–x2/61=1B..x2/25-y2/11=1或y2/25–x2/11=1C.x2/61-y2/25=1或y2/25–x2/61=1D.x2/61-y2/25=1或y2/25–x2/11=17.若方程表示双曲线,则k的值的范围是:A.k25C.1625,你能做对多少题?,继续,回主页,圆的目标诊断题,1.写出圆心在(0,-3),半径是的圆方程。(A1)2.下列方程表示社么图形:(1)(x-3)2+y2=0;(2)x2+y2-2x+2y-2=0;(3)x2+y2+2ab=0。(B1)3.写出过圆x2+y2-25=0上一点M(-2,1)的切线的方程。(B2)4.求下列条件所决定的圆的方程:(1)圆心在(3,4),且与直线6x+8y-15=0相切;(C1)(2)经过点A(2,-1),与直线x-y-1相切;且圆心在直线y=-2x上;(3)经过A(5,1),B(-1,2),C(1,-3)三点。5.求经过点P(0,10),且与x轴切于原点的圆的方程,并判断点A(-5,5),B(,6),,,C(3,-10),在圆内,在圆外,还是在圆上。6.判断直线3x+4y-24=0与圆x2+y2+6x-4y-12=0的位置关系。7.求证:两圆x2+y2+-4x-4=0与x2+y2+6x+10y+16=0互相外切。8.求圆的切线方程:(1)与圆(x+1)2+(y-3)2=25切于点A(3,6)的切线方程。(2)若圆x2+y2=13的切线平行于直线4x+6y-5=0,求这切线的方程。(3)过点A(4,0)向圆x2+y2=1引切线,求这切线的方程。9.一圆拱桥跨度长12米,拱高3米,以拱弦所在的直线为x轴,弦的中点为原点建立直角坐标系,求这圆拱曲线的方程。,继续,圆的目标诊断题答案,1.x2+(y-3)2=32.(1)点(3,0)(2)以(1,-1)为圆心、2为半径的圆(3)x2+(y+b)2=b23.4.(1)(x-3)2+(y-4)2=49/4(2)(x-1)2+(y+2)2=2或(x-9)2+(y+18)2=338(3)7x2+7y2–25x-3y-54=05.x2+(y-5)2=25,A点在圆上,B点在圆内,C点在圆外6.直线与圆相切7.故两圆外切8.(1)4x+3y-30=0,(2)2x+3y=13=0(3)9.x2+(y+9/2)2=225/4(y≥0),椭圆目标诊断题,1.求适合下列条件的椭圆的标准方程(1)a=,b=1,焦点在x轴上(2)a=5,c=,焦点在y轴上(3)a=6,e=1/3,焦点在x轴上(4)b=4,e=3/5,焦点在y轴上2.利用椭圆的面积公式S=πab,求下列椭圆的面积(1)9x2+25y2=225(2)36x2+5y2=1803.求下列椭圆长轴和短轴的长,离心率,焦点坐标,顶点坐标和准线方程,并画出草图。(1)4x2+9y2=36(2)9x2+y2=814.求适合下列条件的椭圆的标准方程(1)长轴是短轴的5倍,且过点(7,2)焦点在x轴上,焦点坐标是(0,-4),(0,4)且经过点()5.求直线x-y+=0和椭圆x2/4+y2=1的交点6.点P与一定点F(4,0)的距离和它到一定直线x=25/4的距离之比是4/5,求点P的轨迹方程。7.地球的子午线是一个椭圆,两个半轴之比是299/300,求地球子午线的离心率。,继续,答案,回主页,椭圆目标诊断题的答案,1.(1)x2/3+y2=1,(2)x2/8+y2/25=1(3)x2/36+y2/32=1,(4)x2/16+y2/25=12.(1)15π,(2)π3.(1)2a=6,2b=4,e=,F(,0)顶点(3,0),(0,2)准线方程(2)2a=18.2b=6,e=F(0,)顶点(3,0),(0,9)准线方程:,4.(1)x2/149+25y2/149=1(2)x2/20+y2/36=15.6.x2/25+y2/9=17.,前一页,双曲线目标诊断题,1.求适合下列条件的双曲线标准方程:(1)a=3,b=4,焦点在x轴上(2)a=,c=3,焦点在y轴上(3)a=6,e=3/2,焦点在x轴上(4)b=,e=3/2,焦点在x轴上2.求下列双曲线的实轴和虚轴长,顶点和焦点坐标,离心率,渐近线和准线方程,并画出草图。(1)x2-4y2=4(2)9x2-16y2=-1443.求双曲线的标准方程(1)实半轴是,经过点焦点在y轴上(2)两渐近线方程是y=3/2x,经过点,4.求直线3x-y+3=0和双曲线x2-y2/4=1的交点5.点P与定点(6,0)及定直线x=16/3的距离之比是求点P的轨迹方程6.求以椭圆x2/25+y2/9=1的焦点为顶点,顶点为焦点的双曲线方程。7.两个观察点的坐标分别是A(200,0)、B(-200,0),单位是米,A点听到爆炸声比B点早1.08秒,求炮弹爆炸点的曲线方程。8.求证:当k<9,k≠4时,方程所表示的圆锥曲线有共同的焦点。,继续,答案,回主页,双曲线目标诊断题答案,1.(1)x2/9-y2/16=1(2)y2/5-x2/4=1(3)x2/36-y2/45=1(4)y2/2-x2/14=12.(1)2a=4.2b=2,顶点(2,0)F(,0),e=,渐近线方程y=1/2x,准线方程x=(2)2a=6,2b=8,顶点(0,3)F(0,5),e=5/3,渐近线方程:Y=3/4x,准线方程y=9/53.(1)y2/20-5x2/16=1(2)9x2-4y2=2,4.(-1,0)和(-13/5,-24/5)5.x2-8y2=326.x2/16-y2/9=178.(1)当k<4时,方程表示椭圆,焦点在x轴,此a2=9-k,b2=4-k,c2=a2-b2=5,F(,0)(2)当4- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 二轮 复习 课件 二次曲线
装配图网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.zhuangpeitu.com/p-11547441.html