离散数学知识汇总.doc
《离散数学知识汇总.doc》由会员分享,可在线阅读,更多相关《离散数学知识汇总.doc(14页珍藏版)》请在装配图网上搜索。
离散数学笔记 第一章 命题逻辑 合取 析取 定义 1. 1.3 否定:当某个命题为真时,其否定为假,当某个命题为假时,其否定为真 定义 1. 1.4 条件联结词,表示“如果… …那么……”形式的语句 定义 1. 1.5 双条件联结词,表示“当且仅当”形式的语句 定义 1.2.1 合式公式 (1)单个命题变元、命题常元为合式公式,称为原子公式。 (2)若某个字符串 A 是合式公式,则A、(A)也是合式公式。 (3)若 A、B 是合式公式,则 A B、AB、A B、AB 是合式公式。 (4)有限次使用(2)~(3)形成的字符串均为合式公式。 1.3等值式 1.4析取范式与合取范式 将一个普通公式转换为范式的基本步骤 1.6推理 定义 1.6.1 设 A 与 C 是两个命题公式, 若 A → C 为永真式、 重言式,则称 C 是 A 的有 效结论,或称 A 可以逻辑推出 C,记为 A => C。(用等值演算或真值表) 第二章 谓词逻辑 2.1、基本概念 ∀:全称量词 ∃:存在量词 一般情况下, 如果个体变元的取值范围不做任何限制即为全总个体域时, 带 “全称量词”的谓词公式形如"∀x(H(x)→B(x)),即量词的后面为条件式,带“存在量词”的谓词公式形如∃x(H(x)∨WL(x)),即量词的后面为合取式 例题 R(x)表示对象 x 是兔子,T(x)表示对象 x 是乌龟, H(x,y)表示 x 比 y 跑得快,L(x,y)表示x 与 y 一样快,则兔子比乌龟跑得快表示为: ∀x∀y(R(x)∧T(y)→H(x,y)) 有的兔子比所有的乌龟跑得快表示为:∃x∀y(R(x)∧T(y)→H(x,y)) 2.2、谓词公式及其解释 定义 2.2.1、 非逻辑符号: 个体常元(如 a,b,c)、 函数常元(如表示的 f(x,y))、 谓词常元(如表示人类的 H(x))。 定义 2.2.2、逻辑符号:个体变元、量词(∀∃)、联结词(﹁∨∧→↔)、逗号、括号。 定义 2.2.3、项的定义:个体常元、变元及其函数式的表达式称为项(item)。 定义 2.2.4、原子公式:设 R()是 n 元谓词,是项,则 R(t)是原子公式。原子公式中的个体变元,可以换成个体变元的表达式(项),但不能出现任何联结词与量词,只能为单个的谓词公式。 定义 2.2.5 合式公式:(1)原子公式是合式公式;(2)若 A 是合式公式,则(﹁A)也是合式公式;(3)若 A,B 合式,则 A∨B, A∧B, A→B , A↔B 合式(4)若 A 合式,则∀xA、∃xA 合式(5)有限次使用(2)~(4)得到的式子是合式。 定义 2.2.6 量词辖域:∀xA 和∃xA 中的量词∀x/∃x 的作用范围,A 就是作用范围。 定义 2.2.7 约束变元:在∀x 和∃x 的辖域 A 中出现的个体变元 x,称为约束变元,这是与量词相关的变元,约束变元的所有出现都称为约束出现。 定义 2.2.8 自由变元:谓词公式中与任何量词都无关的量词,称为自由变元,它的每次出现称为自由出现。一个公式的个体变元不是约束变元,就是自由变元。 注意:为了避免约束变元和自由变元同名出现,一般要对“约束变元”改名,而不对自由变元改名。 定义 2.2.9 闭公式是指不含自由变元的谓词公式 从本例(已省)可知, 不同的公式在同一个解释下, 其真值可能存在, 也可能不存在, 但是对于没有自由变元的公式(闭公式),不论做何种解释,其真值肯定存在 谓词公式的类型:重言式(永真式)、矛盾式(永假式)、可满足公式三种类型 定义 2.2.10 在任何解释下,公式的真值总存在并为真,则为重言式或永真式。 定义 2.2.11 在任何解释下,公式的真值总存在并为假,则为矛盾式或永假式。 定义 2.2.12 存在个体域并存在一个解释使得公式的真值存在并为真,则为可满足式。 定义 2.2.13 代换实例 设 是命题公式 中的命题变元, 是 n 个谓 词公式,用代替公式 中的后得到公式 A,则称 A 为 的代换实例。 如 A(x)∨﹁A(x),∀xA(x) ∨﹁∀ xA(x)可看成 p ∨﹁ p 的代换实例,A(x) ∧﹁A(x),∀xA(x) ∧﹁ ∀x A(x)可看成 p ∧﹁ p 的代换实例。 定理 2.2.1 命题逻辑的永真公式之代换实例是谓词逻辑的永真公式, 命题逻辑的永假公式之代换实例是谓词逻辑的永假式。(代换前后是同类型的公式) 2.3、谓词公式的等值演算 定义 2.3.1 设 A、B 是两个合法的谓词公式,如果在任何解释下,这两个公式的真值都相等,则称 A 与 B 等值,记为 A ó B。 当 AóB 时,根据定义可知,在任何解释下,公式 A 与公式 B 的真值都相同,故 A↔B 为永真式,故得到如下的定义。 定义 2.3.2 设 A、B 是两个合法谓词公式,如果在任何解释下, A↔ B 为永真式, 则 A与 B 等值,记为 A ó B。 一、利用代换实例可证明的等值式(p↔﹁﹁p 永真,代换实例∀ xF(x) ↔﹁﹁∀ xF(x)永真) 二、个体域有限时,带全称量词、存在量词公式的等值式 如:若D={ },则∀ xA(x) ó A()∧A()∧…∧A() 三、量词的德摩律 1、﹁∀xA(x) ó ∃x﹁A(x) 2、﹁∃xA(x) ó ∀x﹁A(x) 四、量词分配律 1、∀x(A(x)∧B(x)) ó ∀xA(x)∧∀xB(x) 2、∃x(A(x)∨B(x)) ó ∃xA(x)∨∃xB(x) 记忆方法:∀与∧,一个尖角朝下、一个尖角朝上,相反可才分配。2 式可看成 1 式的对偶式 五、量词作用域的收缩与扩张律 A(x)含自由出现的个体变元 x,B 不含有自由出现的 x,则有: 1、∀/∃(A(x)∨B) ó ∀/∃A(x)∨B 2、∀/∃(A(x)∧B) ó ∀/∃A(x)∧B 对于条件式 A(x) ↔B, 利用 “基本等值一” 将其转换为析取式, 再使用德摩律进行演算 六、置换规则 若 B 是公式 A 的子公式,且B ó C,将 B 在 A 中的每次出现,都换成 C 得到的公式记为 D,则 A óD 七、约束变元改名规则 将公式 A 中某量词的指导变元及辖域中约束变元每次约束出现,全部换成公式中未出现的字母,所得到的公式记为 B,则 A ó B 例 证明步骤: 2.4、谓词公式的范式 从定理证明过程,可得到获取前束范式的步骤: (1)剔除不起作用的量词; (2)如果约束变元与自由变元同名,则约束变元改名; (3)如果后面的约束变元与前面的约束变元同名,则后的约束变元改名; (4)利用代换实例,将→、↔转换﹁∨∧表示; (5)利用德摩律,将否定﹁深入到原子公式或命题的前面; (6)利用量词辖域的扩张与收缩规律或利用量词的分配律,将量词移到最左边 2.5、谓词推理 定义 2.5.1 若在各种解释下 只能为真即为永真,则称为前提可推出结论 B。 定义 2.5.2 在所有使 为真的解释下,B 为真,则称为前提 可推出结论 B。 谓词逻辑的推理方法分为以下几类: 一、 谓词逻辑的等值演算原则、 规律: 代换实例、 量词的德摩律、 量词的分配律、 量词 辖域的扩张与收缩、约束变元改名。 二、 命题逻辑的推理规则的代换实例, 如假言推理规则、 传递律、 合取与析取的性质律、 CP 规则、反证法等。 三、谓词逻辑的推理公理 第三章 集合与关系 3.1、基本概念 在离散数学称 “不产生歧义的对象的汇集一块” 便构成集合。常用大写字母表示集合, 如 R 表示实数, N 表示自然数, Z 表示整数, Q 表示有理数,C 表示复数。描述一个集合一般有 “枚举法” 与 “描述法” , “枚举法”。元素与集合之间有“属于”或“不属于”二种关系。 定义 3.1.1 设 A,B 是两个集合,如果 A 中的任何元素都是 B 中的元素,则称 A 是 B 的子集,也称 B 包含于 A,记为 BA,也称 A 包含 B,记为 AB。 3.2集合运算性质 定义 3.2.1 设 A、B 为集合,A 与 B 的并集 AB、A 与 B 的的交集 AB、A-B 的定 义:AB={x|xAxB},AB={x|xAxB},A-B={x|xAxB} 定 义 3.2.2 设 A、 B 为 集 合 , A 与 B 的 对 称 差 , 记 为 AB={x|(xAxB)( x AxB)}= AB - AB。 定义 3.2.3 设 A、B 是两个集合,若 AB、BA 则 A=B,即两个集合相等。 幂等律 AA=A、AA=A 结合律 ABC= A(BC)= (AB)C ABC= A(BC)= (AB)C 交换律 AB=BA、AB=BA 分配律 A(BC)=(AB)(AC) A(BC)=(AB)(AC) 同一/零律 AØ = A、AØ= Ø 排中/矛盾律 AA=E、AA= Ø 吸收律(大吃小) A(BA)=A、 A(BA)=A 德摩律 (AB)= A B 、 (AB)= AB 双重否定 A=A 3.3、有穷集的计数 定理 3.3.1 二个集合的包含排斥原理 | | = || + || - || 3.4、序偶 定义 3.4.2 令- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 离散 数学知识 汇总
![提示](https://www.zhuangpeitu.com/images/bang_tan.gif)
链接地址:https://www.zhuangpeitu.com/p-1565610.html