2019-2020年高考数学 6年高考母题精解精析 专题10 圆锥曲线09 理 .doc
《2019-2020年高考数学 6年高考母题精解精析 专题10 圆锥曲线09 理 .doc》由会员分享,可在线阅读,更多相关《2019-2020年高考数学 6年高考母题精解精析 专题10 圆锥曲线09 理 .doc(9页珍藏版)》请在装配图网上搜索。
2019-2020年高考数学 6年高考母题精解精析 专题10 圆锥曲线09 理 (xx广东理数) 21.(本小题满分14分) 设A(),B()是平面直角坐标系xOy上的两点,先定义由点A到点B的一种折线距离p(A,B)为. 当且仅当时等号成立,即三点共线时等号成立. (2)当点C(x, y) 同时满足①P+P= P,②P= P时,点是线段的中点. ,即存在点满足条件。 (xx广东理数)20.(本小题满分为14分) 一条双曲线的左、右顶点分别为A1,A2,点,是双曲线上不同的两个动点。 (1)求直线A1P与A2Q交点的轨迹E的方程式; (2)若过点H(0, h)(h>1)的两条直线l1和l2与轨迹E都只有一个交点,且 ,求h的值。 故,即。 (xx全国卷1理数)(21)(本小题满分12分) 已知抛物线的焦点为F,过点的直线与相交于、两点,点A关于轴的对称点为D. (Ⅰ)证明:点F在直线BD上; (Ⅱ)设,求的内切圆M的方程 . (xx山东理数)(21)(本小题满分12分) 如图,已知椭圆的离心率为,以该椭圆上的点和椭圆的左、右焦点为顶点的三角形的周长为.一等轴双曲线的顶点是该椭圆的焦点,设为该双曲线上异于顶点的任一点,直线和与椭圆的交点分别为和. (Ⅰ)求椭圆和双曲线的标准方程; (Ⅱ)设直线、的斜率分别为、,证明; (Ⅲ)是否存在常数,使得恒成立?若存在,求的值;若不存在,请说明理由. 【命题意图】本题考查了椭圆的定义、离心率、椭圆与双曲线的标准方程、直线与圆锥曲线的位置关系,是一道综合性的试题,考查了学生综合运用知识解决问题的能力。其中问题(3)是一个开放性问题,考查了同学们观察、推理以及创造性地分析问题、解决问题的能力, (xx湖南理数)19.(本小题满分13分) 为了考察冰川的融化状况,一支科考队在某冰川上相距8km的A,B两点各建一个考察基地。视冰川面为平面形,以过A,B两点的直线为x轴,线段AB的的垂直平分线为y轴建立平面直角坐标系(图6)在直线x=2的右侧,考察范围为到点B的距离不超过km区域;在直线x=2的左侧,考察范围为到A,B两点的距离之和不超过km区域。 (Ⅰ)求考察区域边界曲线的方程; (Ⅱ)如图6所示,设线段P1P2,P2P3是冰川的部分边界线(不考虑其他边界线),当冰川融化时,边界线沿与其垂直的方向朝考察区域平行移动,第一年移动0.2km,以后每年移动的距离为前一年的2倍,求冰川边界线移动到考察区域所需的最短时间。 化 融 区 域 P3(8,6) 已 冰 B(4,0) A(-4,0) x (,-1)P1 (xx湖北理数)19(本小题满分12分) 已知一条曲线C在y轴右边,C上每一点到点F(1,0)的距离减去它到y轴距离的差都是1. (Ⅰ)求曲线C的方程; (Ⅱ)是否存在正数m,对于过点M(m,0)且与曲线C有两个交点A,B的任一直线,都有?若存在,求出m的取值范围;若不存在,请说明理由。 (xx安徽理数)19、(本小题满分13分) 已知椭圆经过点,对称轴为坐标轴,焦点 在轴上,离心率。 (Ⅰ)求椭圆的方程; (Ⅱ)求的角平分线所在直线的方程; (Ⅲ)在椭圆上是否存在关于直线对称的相异两点? 若存在,请找出;若不存在,说明理由。- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019-2020年高考数学 6年高考母题精解精析 专题10 圆锥曲线09 2019 2020 年高 数学 考母题精解精析 专题 10 圆锥曲线 09

链接地址:https://www.zhuangpeitu.com/p-5463155.html