2019-2020年高考数学 6年高考母题精解精析 专题12 概率02 理 .doc
《2019-2020年高考数学 6年高考母题精解精析 专题12 概率02 理 .doc》由会员分享,可在线阅读,更多相关《2019-2020年高考数学 6年高考母题精解精析 专题12 概率02 理 .doc(15页珍藏版)》请在装配图网上搜索。
2019-2020年高考数学 6年高考母题精解精析 专题12 概率02 理 一、选择题: 1.(xx年高考浙江卷理科9)有5本不同的书,其中语文书2本,数学书2本,物理书1本.若将其随机的并排摆放到书架的同一层上,则同一科目的书都不相邻的概率] (A) (B) (C) (D ) 解析:因为甲乙两位同学参加同一个小组有3种方法,两位同学个参加一个小组共有种方法;所以,甲乙两位同学参加同一个小组的概率为 点评:本题考查排列组合、概率的概念及其运算和分析问题、解决问题的能力。 4. (xx年高考广东卷理科6)甲、乙两队进行排球决赛.现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军.若两队胜每局的概率相同,则甲队获得冠军的概率为( ) A. B. C. D. 5.(xx年高考湖北卷理科7)如图,用K、A1、A2三类不同的元件连成一个系统.当K正常工作且A1、A2至少有一个正常工作时,系统正常工作.已知K、A1、A2正常工作的概率依次为0.9、0.8、0.8,则系统正常工作的概率为 A.0.960 B.0.864 C.0.720 D.0.576 答案:B 解析:系统正常工作概率为,所以选B. 6.(xx年高考陕西卷理科10)甲乙两人一起去“xx西安世园会”,他们约定,各自独立地从1到6号景点中任选4个进行游览,每个景点参观1小时,则最后一小时他们同在一个景点的概率是 (A) (B) (C) (D) 7. (xx年高考四川卷理科12)在集合中任取一个偶数和一个奇数构成以原点为起点的向量a=(a,b).从所有得到的以原点为起点的向量中任取两个向量为邻边作平行四边形.记所有作成的平行四边形的个数为,其中面积不超过的平行四边形的个数为,则( ) (A) (B) (C) (D) 8.(xx年高考福建卷理科4)如图,矩形ABCD中,点E为边CD的中点,若在矩形ABCD内部随机取一个点Q,则点Q取自△ABE内部的概率等于 A. B. C. D. 【答案】C 二、填空题: 1.(xx年高考浙江卷理科15)某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历,假定该毕业生得到甲公司面试的概率为,得到乙、丙两公司面试的概率为,且三个公司是否让其面试是相互独立的。记为该毕业生得到面试得公司个数。若,则随机变量的数学期望 2. (xx年高考江西卷理科12)小波通过做游戏的方式来确定周末活动,他随机地往单位圆内投掷一点,若此点到圆心的距离大于,则周末去看电影;若此点到圆心的距离小于,则去打篮球;否则,在家看书,则小波周末不在家看书的概率为 【答案】 【解析】小波周末不在家看书包含两种情况:一是去看电影;二是去打篮球;所以小波周末不在家看书的概率为. 3. (xx年高考湖南卷理科15)如图4,EFGH是以O为圆心,半径为1的圆内接正方形.将一颗豆子随机地扔到该圆内,用A表示事件“豆子落在正方形EFGH内”,B表示事件“豆子落在扇形OHE(阴影部分)内”,则(1) ;(2) . 4. (xx年高考湖北卷理科12)在30瓶饮料中,有3瓶已过了保质期,从这30瓶饮料中任取2瓶,则至少取到1瓶已过保质期的概率为 (结果用最简分数表示) 答案: 解析:因为30瓶饮料中未过期饮料有30-3=27瓶,故其概率为. 5.(xx年高考重庆卷理科13)将一枚均匀的硬币投掷6次,则正面出现的次数比反面出现的次数多的概率为 6.(xx年高考安徽卷江苏5)从1,2,3,4这四个数中一次随机取两个数,则其中一个数是另一个的两倍的概率是______ 7.(xx年高考福建卷理科13)盒中装有形状、大小完全相同的5个球,其中红色球3个,黄色球2个。若从中随机取出2个球,则所取出的2个球颜色不同的概率等于_______。 【答案】 8.(xx年高考上海卷理科9)马老师从课本上抄录一个随机变量的概率分布律如下表 请小牛同学计算的数学期望,尽管“!”处无法完全看清,且两个“?”处字迹模糊,但能肯 定这两个“?”处的数值相同。据此,小牛给出了正确答案 。 【答案】 9.(xx年高考上海卷理科12)随机抽取9个同学中,至少有2个同学在同一月出生的概率是 (默认每月天数相同,结果精确到)。 【答案】 三、解答题: 1. (xx年高考山东卷理科18)(本小题满分12分) 红队队员甲、乙、丙与蓝队队员A、B、C进行围棋比赛,甲对A,乙对B,丙对C各一盘,已知甲胜A,乙胜B,丙胜C的概率分别为0.6,0.5,0.5,假设各盘比赛结果相互独立。 (Ⅰ)求红队至少两名队员获胜的概率; (Ⅱ)用表示红队队员获胜的总盘数,求的分布列和数学期望. 【解析】(Ⅰ)红队至少两名队员获胜的概率为=0.55. (Ⅱ)取的可能结果为0,1,2,3,则 =0.1; ++=0.35; =0.4; =0.15. 所以的分布列为 0 1 2 3 P 0.1 0.35 0.4 0.15 数学期望=00.1+10.35+20.4+30.15=1.6. 2. (xx年高考辽宁卷理科19)(本小题满分12分) 某农场计划种植某种新作物,为此对这种作物的两个品种(分别称为品种甲和品种乙)进行田间试验.选取两大块地,每大块地分成n小块地,在总共2n小块地中,随机选n小块地种植品种甲,另外n小块地种植品种乙. (I)假设n=4,在第一大块地中,种植品种甲的小块地的数目记为X,求X的分布列和数学期望; (II)试验时每大块地分成8小块,即n=8,试验结束后得到品种甲和品种乙在个小块地上的每公顷产量(单位:kg/hm2)如下表: 分别求品种甲和品种乙的每公顷产量的样本平均数和样本方差;根据试验结果,你认为应该种植哪一品种? 附:样本数据x1,x2,…,xa的样本方差,其中为样本平均数. 即X的分布列为 X 0 1 2 3 4 P X的数学期望是: . 3.(xx年高考安徽卷理科20)(本小题满分13分) 工作人员需进入核电站完成某项具有高辐射危险的任务,每次只派一个人进去,且每个人只派一次,工作时间不超过10分钟,如果有一个人10分钟内不能完成任务则撤出,再派下一个人。现在一共只有甲、乙、丙三个人可派,他们各自能完成任务的概率分别,假设互不相等,且假定各人能否完成任务的事件相互独立. (Ⅰ)如果按甲在先,乙次之,丙最后的顺序派人,求任务能被完成的概率。若改变三个人被派出的先后顺序,任务能被完成的概率是否发生变化? (Ⅱ)若按某指定顺序派人,这三个人各自能完成任务的概率依次为,其中是的一个排列,求所需派出人员数目的分布列和均值(数字期望); (Ⅲ)假定,试分析以怎样的先后顺序派出人员,可使所需派出的人员数目的均值(数字期望)达到最小。 【解析】:(Ⅰ)无论怎样的顺序派出人员,任务不能被完成的概率都是,所以任务能被完成的概率为= (Ⅱ)当依次派出的三个人各自完成任务的概率分别为时,所需派出人员数目的分布列为 1 2 3 P 所需派出人员数目的均值(数字期望)是 ,若交换前两人的顺序,则变为,由此可见,当时,交换前两人的顺序可减少所需派出人员的数目的均值。 (ii)也可将(Ⅱ)中改写为,若交换后两人的顺序则变为,由此可见,保持第一个人不变,当时,交换后两人的顺序可减少所需派出人员的数目的均值。 组合(i)(ii)可知,当时达到最小,即优先派完成任务概率大的人,可减少所需派出人员的数目的均值,这一结论也合乎常理。 4. (xx年高考全国新课标卷理科19)(本小题满分12分) 某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质品,现用两种新配方(分别称为A配方和B配方)做试验,各生产了100件这种产品,并测试了每件产品的质量指标值,得到下面试验结果: A配方的频数分布表 指标值分组 频数 8 20 42 22 8 B配方的频数分布表 指标值分组 频数 4 12 42 32 8 (Ⅰ)分别估计用A配方,B配方生产的产品的优质品率; (Ⅱ)已知用B配方生成的一件产品的利润y(单位:元)与其质量指标值t的关系式为 从用B配方生产的产品中任取一件,其利润记为X(单位:元),求X的分布列及数学期望.(以实验结果中质量指标值落入各组的频率作为一件产品的质量指标值落入相应组的概率) 5. (xx年高考天津卷理科16)(本小题满分13分) 学校游园活动有这样一个游戏项目:甲箱子里装有3个白球、2个黑球,乙箱子里装有1个白球、2个黑球,这些球除颜色外完全相同,每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖.(每次游戏结束后将球放回原箱) (Ⅰ)求在一次游戏中,(i)摸出3个白球的概率;(ii)获奖的概率; (Ⅱ)求在两次游戏中获奖次数的分布列及数学期望. (Ⅱ)由题意可知的所有可能取值为0,1,,2, P(=0)=, P(=1)=, P(=2) =, 所以的分布列是 0 1 2 P 的数学期望=+=. 6.(xx年高考江西卷理科16)(本小题满分12分) 某饮料公司招聘了一名员工,现对其进行一项测试,以便确定工资级别.公司准备了两种不同的饮料共8杯,其颜色完全相同,并且其中4杯为A饮料,另外4 杯为B饮料,公司要求此员工一一品尝后,从8杯饮料中选出4杯A饮料.若4杯都选对,则月工资定为3500元;若4杯选对3杯,则月工资定为2800元,否则月工资定为2100元,令X表示此人选对A饮料的杯数,假设此人对A和B两种饮料没有鉴别能力. (1)求X的分布列; (2)求此员工月工资的期望. 7. (xx年高考湖南卷理科18)(本小题满分12分)某商店试销某种商品20天,获得如下数据: 日销售量(件) 0 1 2 3 频数 1 5 9 5 试销结束后(假设该商品的日销售量的分布规律不变).设某天开始营业时由该商品3件,当天营业结束后检查存货,若发现存量少于2件,则当天进货补充至3件,否则不进货.将频率视为概率. 求当天商店不进货的概率; 记为第二天开始营业时该商品视为件数,求的分布列和数学期望 由题意知,的可能取值为2,3. + + 故的分布列为 所以的数学期望为. 8. (xx年高考广东卷理科17)(本小题满分13分) 为了解甲、乙两厂的产品质量,采用分层抽样的方法从甲、乙两厂生产的产品中分别抽取14件和5件,测量产品中微量元素x,y的含量(单位:毫克).下表是乙厂的5件产品的测量数据: (1)已知甲厂生产的产品共98件,求乙厂生产的产品数量; (2)当产品中的微量元素x,y满足≥175且y≥75,该产品为优等品,用上述样本数据估计乙厂生产的优等品的数量; (3)从乙厂抽出的上述5件产品中,随即抽取2件,求抽取的2件产品中优等品数的分布列及其均值(即数学期望). (3)的取值为0,1,2。 所以的分布列为 0 1 2 P 故 9.(xx年高考陕西卷理科20)(本小题满分13分) 如图,A地到火车站共有两条路径 和 ,据统计,通过两条路径所用的时间互不影响,所用时间落在各时间段内的频率如下表: 时间(分钟) 的频率 0.1 0.2 0.3 0.2 0.2 的频率 0 0.1 0.4 0.4 0.1 现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站。 (Ⅰ)为了尽最大可能在各自允许的时间内赶到火车站,甲和乙应如何选择各自的路径? (Ⅱ)用X表示甲、乙两人中在允许的时间内能赶到火车站的人数,针对(Ⅰ)的选择方案,求X的分布列和数学期望。 (Ⅱ)A、B分别表示针对(Ⅰ)的选择方案,甲、乙在各自允许的时间内赶到火车站,由(Ⅰ)知 又由题意知,A,B独立, X的分布列为 X 0 1 2 P 0.04 0.42 0.54 10.(xx年高考重庆卷理科17)(本小题满分13分。(Ⅰ)小问5分(Ⅱ)小问8分.) 某市公租房房屋位于A.B.C三个地区,设每位申请人只申请其中一个片区的房屋,且申请其中任一个片区的房屋是等可能的,求该市的任4位申请人中: (Ⅰ)若有2人申请A片区房屋的概率; (Ⅱ)申请的房屋在片区的个数的分布列与期望。 (2)设甲,乙两个所付的费用之和为,可为 分布列 . 12. (xx年高考全国卷理科18) (本小题满分12分)(注意:在试题卷上作答无效) 根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3,设各车主购买保险相互独立 (I)求该地1位车主至少购买甲、乙两种保险中的l种的概率; (Ⅱ)X表示该地的l00位车主中,甲、乙两种保险都不购买的车主数。求的期望。 13.(xx年高考北京卷理科17)本小题共13分 以下茎叶图记录了甲、乙两组个四名同学的植树棵树。乙组记录中有一个数据模糊,无法确认,在图中以X表示。 (Ⅰ)如果X=8,求乙组同学植树棵树的平均数和方差; (Ⅱ)如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵树Y的分布列和数学期望。 (注:方差,其中为,,…… 的平均数) 同理可得 所以随机变量Y的分布列为: Y 17 18 19 20 21 P EY=17P(Y=17)+18P(Y=18)+19P(Y=19)+20P(Y=20)+21P(Y=21)=17+18+19+20+21=19. 14.(xx年高考福建卷理科19)(本小题满分13分) 某产品按行业生产标准分成8个等级,等级系数X依次为1,2,……,8,其中X≥5为标准A,X≥为标准B,已知甲厂执行标准A生产该产品,产品的零售价为6元/件;乙厂执行标准B生产该产品,产品的零售价为4元/件,假定甲、乙两厂得产品都符合相应的执行标准 (I)已知甲厂产品的等级系数X1的概率分布列如下所示: 5 6 7 8 P 0.4 a b 0.1 且X1的数字期望EX1=6,求a,b的值; (II)为分析乙厂产品的等级系数X2,从该厂生产的产品中随机抽取30件,相应的等级系数组成一个样本,数据如下: 3 5 3 3 8 5 5 6 3 4 6 3 4 7 5 3 4 8 5 3 8 3 4 3 4 4 7 5 6 7 用这个样本的频率分布估计总体分布,将频率视为概率,求等级系数X2的数学期望. (III)在(I)、(II)的条件下,若以“性价比”为判断标准,则哪个工厂的产品更具可购买性?说明理由. 注:(1)产品的“性价比”=; (2)“性价比”大的产品更具可购买性. 解析:本小题主要考查概率、统计等基础知识,考查数据处理能力、运算求解能力、应用意识,考查函数与方程思想、必然与或然思想、分类与整合思想,满分13分。 解:(I)因为 又由X1的概率分布列得 由 (II)由已知得,样本的频率分布表如下: 3 4 5 6 7 8 0.3 0.2 0.2 0.1 0.1 0.1 用这个样本的频率分布估计总体分布,将频率视为概率,可得等级系数X2的概率分布列如下: 3 4 5 6 7 8 P 0.3 0.2 0.2 0.1 0.1 0.1 所以- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019-2020年高考数学 6年高考母题精解精析 专题12 概率02 2019 2020 年高 数学 考母题精解精析 专题 12 概率 02

链接地址:https://www.zhuangpeitu.com/p-5486630.html